1
|
Guan P, Qi C, Xu G, Sheng C, Sun S, Zhou Z, Jia S. Designing a T cell multi-epitope vaccine against hRSV with reverse vaccinology: An immunoinformatics approach. Colloids Surf B Biointerfaces 2025; 251:114599. [PMID: 40031111 DOI: 10.1016/j.colsurfb.2025.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
As an infectious viral pathogen, human respiratory syncytial virus (hRSV) can cause severe respiratory infections and is recognized as one of the highest priority pathogens by the World Health Organization (WHO). Although vaccines play an important role in disease prevention and transmission, the wild-type virus is usually prone to immune escape due to the relatively high mutation rate of biological proteins. Therefore, designing a broad-spectrum hRSV vaccine is essential to provide extensive protection against multiple viral variants. Using a consensus sequence approach, we designed a broad-spectrum T-cell epitope vaccine composed of 385 amino acids, consisting of 12 CTLs and 5 HTLs from the fusion protein and glycoprotein. The designed multi-epitope vaccine was expected to have non-allergenicity, high population coverage, strong antigenicity and immunogenicity, appropriate physical and chemical properties, and high solubility. Meanwhile, the structure of the vaccine had a high similarity to that of the natural virus. In addition, through structural biology analysis, the constructed vaccine achieved robust structural compactness and binding stability. Computer-generated immunological simulations indicated that the vaccine could elicit realistic immune responses in humans. The designed vaccine showed good binding affinity and molecular and immune simulation. In conclusion, the broad-spectrum hRSV vaccine could be an excellent candidate for preventing hRSV infection. The employed prediction pipeline was proved to be an efficient method for screening immunogenic epitopes of additional pathogens.
Collapse
Affiliation(s)
- Peibin Guan
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Congyan Qi
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Guojin Xu
- National Institute of Biological Science (NIBS),Beijing 102206, China
| | - Can Sheng
- Department of Neurology, The Affiliated Hospital of Jining Medical University, Jining 272004, China
| | - Siqi Sun
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College, Beijing 100730, China
| | - Zhicheng Zhou
- Hubei Provincial Key Laboratory of Yeast Function, Angel Yeast Co., Ltd, Yichang 443003, China
| | - Shulei Jia
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
2
|
Samantaray M, Pushan SS, Rajagopalan M, Abrol K, Basumatari J, Murthy TPK, Ramaswamy A. Designing a multi-epitope vaccine candidate against pandemic influenza a virus: an immunoinformatics and structural vaccinology approach. Mol Divers 2025:10.1007/s11030-025-11124-7. [PMID: 39921843 DOI: 10.1007/s11030-025-11124-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/26/2025] [Indexed: 02/10/2025]
Abstract
Influenza A virus (IAV) remains a significant public health concern due to its annual epidemics and potential for global pandemics. Despite the availability of countermeasures such as vaccines and antiviral treatments, their effectiveness is often questioned due to the emergence of novel strains with antiviral resistance and the variable efficacy of influenza vaccines compared to other vaccines. Traditionally, influenza vaccination strategies have focused on matrix, neuraminidase, and nucleoproteins. In this study, considering the crucial roles of HA and RdRp (PA, PB1, and PB2) of Influenza A, a reverse vaccinology approach is put forth in designing a possible promising antigenic protein toward the development of vaccines against H1N1 viruses. With the development of immunoinformatics approach, one can design/construct potential candidates for vaccine formulation against IAV with the epitope segments identified based on B- and T-cell recognition linked via adjuvants like EAAAK, GPGPG, and AAY linkers. Computational assessments of physicochemical properties, antigenicity, immunogenicity, allergenicity, and toxicity predictions, conducted to evaluate the potential of designed vaccine construct, indicated high antigenicity and potential interactions with immune receptors. Molecular docking of the vaccine construct with human immune receptors (MHCI, MHCII, TLR4, TLR7, and TLR8) followed by molecular dynamics simulations demonstrated stable dynamics with strong binding affinity. The computational immune response modeling with multiple dosages suggested significant immune activation by this construct against IAV. In essence, these findings highlight the potential immune property of the vaccine construct, and put forth the need of thorough preclinical assessments in transforming this construct as a vaccine against the challenging IAV pathogens.
Collapse
Affiliation(s)
- Mahesh Samantaray
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India
- Directorate of Medical Research, Aarupadai Veedu Medical College and Hospital, Vinayaka Mission's Research Foundation, Puducherry, 607402, India
| | - Shilpa Sri Pushan
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Muthukumaran Rajagopalan
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Kajal Abrol
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - Jayarani Basumatari
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India
| | - T P Krishna Murthy
- Department of Biotechnology, M. S. Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Amutha Ramaswamy
- Department of Bioinformatics, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
3
|
Mahmoodi S, Amirzakaria JZ, Ghasemian A. A novel multi-epitope peptide vaccine targeting immunogenic antigens of Ebola and monkeypox viruses with potential of immune responses provocation in silico. Biotechnol Appl Biochem 2025; 72:58-74. [PMID: 39128888 DOI: 10.1002/bab.2646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024]
Abstract
The emergence or reemergence of monkeypox (Mpox) and Ebola virus (EBOV) agents causing zoonotic diseases remains a huge threat to human health. Our study aimed at designing a multi-epitope vaccine (MEV) candidate to target both the Mpox and EBOV agents using immunoinformatics tools. Viral protein sequences were retrieved, and potential nonallergenic, nontoxic, and antigenic epitopes were obtained. Next, cytotoxic and helper T-cell (CTL and HTL, respectively) and B-cell (BCL) epitopes were predicted, and those potential epitopes were fused utilizing proper linkers. The in silico cloning and expression processes were implemented using Escherichia coli K12. The immune responses were prognosticated using the C-ImmSim server. The MEV construct (29.53 kDa) included four BCL, two CTL, and four HTL epitopes and adjuvant. The MEV traits were pertinent in terms of antigenicity, non-allergenicity, nontoxicity, physicochemical characters, and stability. The MEV candidate was also highly expressed in E. coli K12. The strong affinity of MEV-TLR3 was confirmed using molecular docking and molecular dynamics simulation analyses. Immune simulation analyses unraveled durable activation and responses of cellular and humoral arms alongside innate immune responses. The designed MEV candidate demonstrated appropriate traits and was promising in the prediction of immune responses against both Mpox and EBOV agents. Further experimental assessments of the MEV are required to verify its efficacy.
Collapse
Affiliation(s)
- Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Javad Zamani Amirzakaria
- Department of Plant Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| |
Collapse
|
4
|
Ganesh SK, Devi CS. Exploring the interactions of rapamycin with target receptors in A549 cancer cells: insights from molecular docking analysis. J Cancer Res Clin Oncol 2025; 151:31. [PMID: 39762538 PMCID: PMC11703896 DOI: 10.1007/s00432-024-06072-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Rapamycin, a macrocyclic antibiotic derived from the actinomycetes Streptomyces hygroscopicus, is a widely used immunosuppressant and anticancer drug. Even though rapamycin is regarded as a multipotent drug acting against a broad array of anomalies and diseases, the mechanism of action of rapamycin and associated pathways have not been studied and reported clearly. Also reports on the binding of rapamycin to cancer cell receptors are limited to the serine/threonine protein kinase mTORC1. Hence, to uncover the exact potential of rapamycin in cancer therapy, a series of cell culture and in silico studies were conducted to identify other receptors capable of binding to rapamycin. Through molecular docking and simulations, it was found that the receptors EGFR, FKBP12, MET, FGFR, ROS1 and ALK were capable of binding with rapamycin. The findings from the current study provides new insights in modern cancer research and therapy. This could also facilitate in understanding the possible action mechanisms of rapamycin in other diseases such as neurovegetative diseases, autoimmune diseases, etc.
Collapse
Affiliation(s)
- Sanjeev K Ganesh
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - C Subathra Devi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
5
|
Alsaiari AA, Hakami MA, Alotaibi BS, Alkhalil SS, Alkhorayef N, Khan K, Jalal K. Delineating multi-epitopes vaccine designing from membrane protein CL5 against all monkeypox strains: a pangenome reverse vaccinology approach. J Biomol Struct Dyn 2024; 42:8385-8406. [PMID: 37599459 DOI: 10.1080/07391102.2023.2248301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/02/2023] [Indexed: 08/22/2023]
Abstract
The recently identified monkeypox virus (MPXV or mpox) is a zoonotic orthopox virus that infects humans and causes diseases with traits like smallpox. The world health organization (WHO) estimates that 3-6% of MPXV cases result in death. As it might impact everyone globally, like COVID, and become the next pandemic, the cure for this disease is important for global public health. The high incidence and disease ratio of MPXV necessitates immediate efforts to design a unique vaccine candidate capable of addressing MPXV diseases. Here, we used a computational pan-genome-based vaccine design strategy for all currently reported 19 MPXV strains acquired from different regions of the world. Thus, this study's objective was to develop a new and safe vaccine candidate against MPXV by targeting the membrane CL5 protein; identified after the pangenome analysis. Proteomics and reverse vaccinology have covered up all of the MPXV epitopes that would usually stimulate robust host immune responses. Following this, only two mapped (MHC-I, MHC-II, and B-cell) epitopes were observed to be extremely effective that can be used in the construction of CL5 protein vaccine candidates. The suggested vaccine (V5) candidate from eight vaccine models was shown to be antigenic, non-allergenic, and stable (with 213 amino acids). The vaccine's candidate efficacy was evaluated by using many in silico methods to predict, improve, and validate its 3D structure. Molecular docking and molecular dynamics simulations further reveal that the proposed vaccine candidate ensemble has a high interaction energy with the HLAs and TRL2/4 immunological receptors under study. Later, the vaccine sequence was used to generate an expression vector for the E. coli K12 strain. Further study uncovers that V5 was highly immunogenic because it produced robust primary, secondary, and tertiary immune responses. Eventually, the use of computer-aided vaccine designing may significantly reduce costs and speed up the process of developing vaccines. Although, the results of this research are promising, however, more research (experimental; in vivo, and in vitro studies) is needed to verify the biological efficacy of the proposed vaccine against MPXV.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ahad Amer Alsaiari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Mohammed Ageeli Hakami
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Bader S Alotaibi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Samia S Alkhalil
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Nada Alkhorayef
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Kanwal Khan
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Khurshid Jalal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| |
Collapse
|
6
|
He Y, Zhu Y, Yin Z, Shi J, Shang K, Tian T, Shi H, Ding J, Zhang F. Design a novel of Brucellosis preventive vaccine based on IgV_CTLA-4 and multiple epitopes via immunoinformatics approach. Microb Pathog 2024; 195:106909. [PMID: 39218373 DOI: 10.1016/j.micpath.2024.106909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Brucellosis is a zoonotic disease caused by Brucella, which is difficult to eliminate by conventional drugs. Therefore, a novel multi-epitope vaccine (MEV) was designed to prevent human Brucella infection. Based on the method of "reverse vaccinology", cytotoxic T lymphocyte epitopes (CTLEs), helper T lymphocyte epitopes (HTLEs), linear B-cell epitopes (LBEs) and conformational B-cell epitopes (CBEs) of four Brucella proteins (VirB9, VirB10, Omp 19 and Omp 25) were obtained. In order to keep the correct protein folding, the multiple epitopes was constructed by connecting epitopes through linkers. In view of the significant connection between human leukocyte antigen CTLA-4 and B7 molecules found on antigen presenting cells (APCs), a new vaccine (V_C4MEV) for preventing brucellosis was created by combining CTLA-4 immunoglobulin variable region (IgV_CTLA-4) with MEV protein. Immunoinformatics analysis showed that V_C4MEV has a good secondary and tertiary structure. Additionally, molecular docking and molecular dynamics simulation (MD) revealed a robust binding affinity between IgV_ CTLA-4 and the B7 molecule. Notably, the vaccine V_C4MEV was demonstrated favorable immunogenicity and antigenicity in both in vitro and in vivo experiments. V_C4MEV had the potential to activate defensive cells and immune responses, offering a hopeful approach for developing vaccines against Brucella in the upcoming years.
Collapse
Affiliation(s)
- Yueyue He
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China; Xinjiang Key Molecular Biology Laboratory of Endemic Disease, Xinjiang Medical University, Urumqi, China
| | - YueJie Zhu
- Department of Reproductive Assistance, Center for Reproductive Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China; The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Zhengwei Yin
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Juan Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Kaiyu Shang
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Tingting Tian
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huidong Shi
- The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Jianbing Ding
- Department of Immunology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China; State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| | - Fengbo Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China; Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China.
| |
Collapse
|
7
|
Panickar A, Manoharan A, Anbarasu A, Ramaiah S. Respiratory tract infections: an update on the complexity of bacterial diversity, therapeutic interventions and breakthroughs. Arch Microbiol 2024; 206:382. [PMID: 39153075 DOI: 10.1007/s00203-024-04107-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/30/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024]
Abstract
Respiratory tract infections (RTIs) have a significant impact on global health, especially among children and the elderly. The key bacterial pathogens Streptococcus pneumoniae, Haemophilus influenzae, Klebsiella pneumoniae, Staphylococcus aureus and non-fermenting Gram Negative bacteria such as Acinetobacter baumannii and Pseudomonas aeruginosa are most commonly associated with RTIs. These bacterial pathogens have evolved a diverse array of resistance mechanisms through horizontal gene transfer, often mediated by mobile genetic elements and environmental acquisition. Treatment failures are primarily due to antimicrobial resistance and inadequate bacterial engagement, which necessitates the development of alternative treatment strategies. To overcome this, our review mainly focuses on different virulence mechanisms and their resulting pathogenicity, highlighting different therapeutic interventions to combat resistance. To prevent the antimicrobial resistance crisis, we also focused on leveraging the application of artificial intelligence and machine learning to manage RTIs. Integrative approaches combining mechanistic insights are crucial for addressing the global challenge of antimicrobial resistance in respiratory infections.
Collapse
Affiliation(s)
- Avani Panickar
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anand Manoharan
- Infectious Diseases Medical and Scientific Affairs, GlaxoSmithKline (GSK), Worli, Maharashtra, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
- Department of Bio-Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
8
|
Biswas R, Swetha RG, Basu S, Roy A, Ramaiah S, Anbarasu A. Designing multi-epitope vaccine against human cytomegalovirus integrating pan-genome and reverse vaccinology pipelines. Biologicals 2024; 87:101782. [PMID: 39003966 DOI: 10.1016/j.biologicals.2024.101782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/13/2024] [Accepted: 07/08/2024] [Indexed: 07/16/2024] Open
Abstract
Human cytomegalovirus (HCMV) is accountable for high morbidity in neonates and immunosuppressed individuals. Due to the high genetic variability of HCMV, current prophylactic measures are insufficient. In this study, we employed a pan-genome and reverse vaccinology approach to screen the target for efficient vaccine candidates. Four proteins, envelope glycoprotein M, UL41A, US23, and US28, were shortlisted based on cellular localization, high solubility, antigenicity, and immunogenicity. A total of 29 B-cell and 44 T-cell highly immunogenic and antigenic epitopes with high global population coverage were finalized using immunoinformatics tools and algorithms. Further, the epitopes that were overlapping among the finalized B-cell and T-cell epitopes were linked with suitable linkers to form various combinations of multi-epitopic vaccine constructs. Among 16 vaccine constructs, Vc12 was selected based on physicochemical and structural properties. The docking and molecular simulations of VC12 were performed, which showed its high binding affinity (-23.35 kcal/mol) towards TLR4 due to intermolecular hydrogen bonds, salt bridges, and hydrophobic interactions, and there were only minimal fluctuations. Furthermore, Vc12 eliciting a good response was checked for its expression in Escherichia coli through in silico cloning and codon optimization, suggesting it to be a potent vaccine candidate.
Collapse
Affiliation(s)
- Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Rayapadi G Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, 761008, Odisha, India
| | - Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biosciences, SBST, VIT, Vellore, 632014, Tamil Nadu, India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, Tamil Nadu, India; Department of Biotechnology, SBST, VIT, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Roy A, Swetha RG, Basu S, Biswas R, Ramaiah S, Anbarasu A. Integrating pan-genome and reverse vaccinology to design multi-epitope vaccine against Herpes simplex virus type-1. 3 Biotech 2024; 14:176. [PMID: 38855144 PMCID: PMC11153438 DOI: 10.1007/s13205-024-04022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/27/2024] [Indexed: 06/11/2024] Open
Abstract
Herpes simplex virus type-1 (HSV-1), the etiological agent of sporadic encephalitis and recurring oral (sometimes genital) infections in humans, affects millions each year. The evolving viral genome reduces susceptibility to existing antivirals and, thus, necessitates new therapeutic strategies. Immunoinformatics strategies have shown promise in designing novel vaccine candidates in the absence of a clinically licensed vaccine to prevent HSV-1. However, to encourage clinical translation, the HSV-1 pan-genome was integrated with the reverse-vaccinology pipeline for rigorous screening of universal vaccine candidates. Viral targets were screened from 104 available complete genomes. Among 364 proteins, envelope glycoprotein D being an outer membrane protein with a high antigenicity score (> 0.4) and solubility (> 0.6) was selected for epitope screening. A total of 17 T-cell and 4 B-cell epitopes with highly antigenic, immunogenic, non-toxic properties and high global population coverage were identified. Furthermore, 8 vaccine constructs were designed using different combinations of epitopes and suitable linkers. VC-8 was identified as the most potential vaccine candidate regarding chemical and structural stability. Molecular docking revealed high interactive affinity (low binding energy: - 56.25 kcal/mol) of VC-8 with the target elicited by firm intermolecular H-bonds, salt-bridges, and hydrophobic interactions, which was validated with simulations. Compatibility of the vaccine candidate to be expressed in pET-29(a) + plasmid was established by in silico cloning studies. Immune simulations confirmed the potential of VC-8 to trigger robust B-cell, T-cell, cytokine, and antibody-mediated responses, thereby suggesting a promising candidate for the future of HSV-1 prevention. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04022-6.
Collapse
Affiliation(s)
- Aditi Roy
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Rayapadi G. Swetha
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Soumya Basu
- Department of Biotechnology, NIST University, Berhampur, Odisha 761008 India
| | - Rhitam Biswas
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biosciences, SBST, VIT, Vellore, Tamil Nadu 632014 India
| | - Anand Anbarasu
- Medical and Biological Computing Laboratory, School of Biosciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014 India
- Department of Biotechnology, SBST, VIT, Vellore, Tamil Nadu 632014 India
| |
Collapse
|
10
|
de Araújo LP, de Melo Santos NC, Corsetti PP, de Almeida LA. Immunoinformatic Approach for Rational Identification of Immunogenic Peptides Against Host Entry and/or Exit Mpox Proteins and Potential Multiepitope Vaccine Construction. J Infect Dis 2024; 229:S285-S292. [PMID: 37804521 DOI: 10.1093/infdis/jiad443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023] Open
Abstract
COVID-19 has intensified humanity's concern about the emergence of new pandemics. Since 2018, epidemic outbreaks of the mpox virus have become worrisome. In June 2022, the World Health Organization declared the disease a global health emergency, with 14 500 cases reported by the Centers for Disease Control and Prevention in 60 countries. Therefore, the development of a vaccine based on the current virus genome is paramount in combating new cases. In view of this, we hypothesized the obtainment of rational immunogenic peptides predicted from proteins responsible for entry of the mpox virus into the host (A17L, A26L/A30L, A33R, H2R, L1R), exit (A27L, A35R, A36R, C19L), and both (B5R). To achieve this, we aligned the genome sequencing data of mpox virus isolated from an infected individual in the United States in June 2022 (ON674051.1) with the reference genome dated 2001 (NC_003310.1) for conservation analysis. The Immune Epitope Database server was used for the identification and characterization of the epitopes of each protein related to major histocompatibility complex I or II interaction and recognition by B-cell receptors, resulting in 138 epitopes for A17L, 233 for A28L, 48 for A33R, 77 for H2R, 77 for L1R, 270 for A27L, 72 for A35R, A36R, 148 for C19L, and 276 for B5R. These epitopes were tested in silico for antigenicity, physicochemical properties, and allergenicity, resulting in 51, 40, 10, 34, 38, 57, 25, 7, 47, and 53 epitopes, respectively. Additionally, to select an epitope with the highest promiscuity of binding to major histocompatibility complexes and B-cell receptor simultaneously, all epitopes of each protein were aligned, and the most repetitive and antigenic regions were identified. By classifying the results, we obtained 23 epitopes from the entry proteins, 16 from the exit proteins, and 7 from both. Subsequently, 1 epitope from each protein was selected, and all 3 were fused to construct a chimeric protein that has potential as a multiepitope vaccine. The constructed vaccine was then analyzed for its physicochemical, antigenic, and allergenic properties. Protein modeling, molecular dynamics, and molecular docking were performed on Toll-like receptors 2, 4, and 8, followed by in silico immune simulation of the vaccine. Finally, the results indicate an effective, stable, and safe vaccine that can be further tested, especially in vitro and in vivo, to validate the findings demonstrated in silico.
Collapse
Affiliation(s)
| | | | - Patrícia Paiva Corsetti
- Departamento de Microbiologia e Imunologia, Universidade Federal de Alfenas, Alfenas, Brazil
| | | |
Collapse
|
11
|
Giorgi FM, Pozzobon D, Di Meglio A, Mercatelli D. Genomic and transcriptomic analysis of the recent Mpox outbreak. Vaccine 2024; 42:1841-1849. [PMID: 38311533 DOI: 10.1016/j.vaccine.2023.12.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 02/06/2024]
Abstract
The Mpox (formerly named Monkeypox) virus is the etiological cause of a recent multi-country outbreak, with thousands of distinct cases detected outside the endemic areas of Africa as of December 2023. In this article, we analyze the sequences of full genomes of Mpox virus from Europe and compare them with all available Mpox sequences of historical relevance, annotated by year and geographic origin, as well as related Cowpox and Variola (smallpox) virus sequences. Our results show that the recent outbreak is most likely originating from the West African clade of Mpox, with >99 % sequence identity with sequences derived from historical and recent cases, dating from 1971 to 2017. We analyze specific mutations occurring in viral proteins between the current outbreak, previous Mpox and Cowpox sequences, and the historical Variola virus. Genome-wide sequence analysis of the recent outbreak and other Mpox/Cowpox/Variola viruses shows a very high conservation, with 97.9 % (protein-based) and 97.8 % (nucleotide-based) sequence identity. We identified significant correlation in human transcriptional responses as well, with a conserved immune pathway response induced in human cell cultures by the three families of Pox virus. The similarities identified between the major strains of Pox viruses, as well as within the Mpox clades, both at the genomic and transcriptomic levels, provide a molecular basis for the observed efficacy of Variola vaccines in other Poxviruses.
Collapse
Affiliation(s)
- Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy.
| | - Daniele Pozzobon
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Antonio Di Meglio
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| | - Daniele Mercatelli
- Department of Pharmacy and Biotechnology, University of Bologna, Via Selmi 3, 40126 Bologna, Italy
| |
Collapse
|
12
|
Dhanushkumar T, Selvam PK, M E S, Vasudevan K, C GPD, Zayed H, Kamaraj B. Rational design of a multivalent vaccine targeting arthropod-borne viruses using reverse vaccinology strategies. Int J Biol Macromol 2024; 258:128753. [PMID: 38104690 DOI: 10.1016/j.ijbiomac.2023.128753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/17/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Viruses transmitted by arthropods, such as Dengue, Zika, and Chikungunya, represent substantial worldwide health threats, particularly in countries like India. The lack of approved vaccines and effective antiviral therapies calls for developing innovative strategies to tackle these arboviruses. In this study, we employed immunoinformatics methodologies, incorporating reverse vaccinology, to design a multivalent vaccine targeting the predominant arboviruses. Epitopes of B and T cells were recognized within the non-structural proteins of Dengue, Zika, and Chikungunya viruses. The predicted epitopes were enhanced with adjuvants β-defensin and RS-09 to boost the vaccine's immunogenicity. Sixteen distinct vaccine candidates were constructed, each incorporating epitopes from all three viruses. FUVAC-11 emerged as the most promising vaccine candidate through molecular docking and molecular dynamics simulations, demonstrating favorable binding interactions and stability. Its effectiveness was further evaluated using computational immunological studies confirming strong immune responses. The in silico cloning performed using the pET-28a(+) plasmid facilitates the future experimental implementation of this vaccine candidate, paving the way for potential advancements in combating these significant arboviral threats. However, further in vitro and in vivo studies are warranted to confirm the results obtained in this computational study, which highlights the effectiveness of immunoinformatics and reverse vaccinology in creating vaccines against major Arboviruses, offering a promising model for developing vaccines for other vector-borne diseases and enhancing global health security.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Balu Kamaraj
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
13
|
Katturajan R, Shivaji P, Nithiyanandam S, Parthasarathy M, Magesh S, Vashishth R, Radhakrishnan V, Prince SE. Antioxidant and Antidiabetic Potential of Ormocarpum cochinchinense (Lour.) Merr. Leaf: An Integrated In vitro and In silico Approach. Chem Biodivers 2024; 21:e202300960. [PMID: 38217335 DOI: 10.1002/cbdv.202300960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Diabetes is a prevalent metabolic disorder associated with various complications. Inhibition of α-glucosidase and α-amylase enzymes is an effective strategy for managing non-insulin-dependent diabetes mellitus. This study aimed to investigate the antioxidant and antidiabetic potential of Ormocarpum cochinchinense leaf through in vitro and in silico approaches. The methanol extract exhibited the highest phenolic and flavonoid content over solvent extracts aqueous, acetone, hexane, and chloroform, the same has been correlating with strong antioxidant activity. Furthermore, the methanol extract demonstrated significant inhibitory effects on α-amylase and α-glucosidase enzymes, indicating its potential as an antidiabetic agent. Molecular docking analysis identified compounds, including myo-inositol, with favorable binding energies comparable to the standard drug metformin. The selected compounds displayed strong binding affinity towards α-amylase and α-glucosidase enzymes. Structural dynamics analysis revealed that myo-inositol formed a more stable complex with the enzymes. These findings suggest that O. cochinchinense leaf possesses antioxidant and antidiabetic properties, making it a potential source for developing therapeutic agents.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Priyadharshini Shivaji
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Sangeetha Nithiyanandam
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | - Manisha Parthasarathy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| | | | - Rahul Vashishth
- Department of Biosciences, School of Biosciences and Technology, VIT, Vellore, 632014
| | - Vidya Radhakrishnan
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, 632014, India
| | - Sabina Evan Prince
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, 632014
| |
Collapse
|
14
|
Rastogi A, Kumar M. Current Status of Vaccine Development for Monkeypox Virus. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:289-300. [PMID: 38801585 DOI: 10.1007/978-3-031-57165-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Monkeypox virus (MPXV) of poxviridae family causes a zoonotic disease called monkeypox (Mpox). MPXV cases have a fatality ratio ranging from 0 to 11% globally and have been more prevalent in children. There are three generations of smallpox vaccines that protect against MPXV. First and second generation of the vaccinia virus (VACV) vaccine protects MPXV. However, various adverse side effects were associated with the first and second generations of vaccines. In contrast, the Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) replication-incompetent vaccine shows fewer adverse effects and a significant amount of neutralizing antibodies in mammalian cells. A third-generation Modified Vaccinia Ankara-Bavarian Nordic (MVA-BN) was approved to prevent Mpox in 2019. Recently, MVA-BN-based Imvanex, Imvamune, and JYNNEOS vaccines have also been administered against MPXV. Globally, the World Health Organization (WHO) declared a global health emergency in May 2022 due to increased MPXV cases. Various computational studies have also designed a multi-epitope-based vaccine against the MPXV. In the multi-epitope-based vaccine, different epitopes like B-cell, Cytotoxic T Lymphocyte (CTL), CD8+, and CD4+ epitopes were derived from MPXV proteins. Further, these epitopes were linked with the help of various linkers to design a multi-epitope vaccine against MPXV. In summary, we have provided an overview of the current status of the vaccine against MPXV.
Collapse
Affiliation(s)
- Amber Rastogi
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manoj Kumar
- Virology Unit, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
15
|
Zhu J, Yu J, Qin H, Chen X, Wu C, Hong X, Zhang Y, Zhang Z. Exploring the key genomic variation in monkeypox virus during the 2022 outbreak. BMC Genom Data 2023; 24:67. [PMID: 37968621 PMCID: PMC10652487 DOI: 10.1186/s12863-023-01171-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND In 2022, a global outbreak of monkeypox occurred with a significant shift in its epidemiological characteristics. The monkeypox virus (MPXV) belongs to the B.1 lineage, and its genomic variations that were linked to the outbreak were investigated in this study. Previous studies have suggested that viral genomic variation plays a crucial role in the pathogenicity and transmissibility of viruses. Therefore, understanding the genomic variation of MPXV is crucial for controlling future outbreaks. METHODS This study employed bioinformatics and phylogenetic approaches to evaluate the key genomic variation in the B.1 lineage of MPXV. A total of 979 MPXV strains were screened, and 212 representative strains were analyzed to identify specific substitutions in the viral genome. Reference sequences were constructed for each of the 10 lineages based on the most common nucleotide at each site. A total of 49 substitutions were identified, with 23 non-synonymous substitutions. Class I variants, which had significant effects on protein conformation likely to affect viral characteristics, were classified among the non-synonymous substitutions. RESULTS The phylogenetic analysis revealed 10 relatively monophyletic branches. The study identified 49 substitutions specific to the B.1 lineage, with 23 non-synonymous substitutions that were classified into Class I, II, and III variants. The Class I variants were likely responsible for the observed changes in the characteristics of circulating MPXV in 2022. These key mutations, particularly Class I variants, played a crucial role in the pathogenicity and transmissibility of MPXV. CONCLUSION This study provides an understanding of the genomic variation of MPXV in the B.1 lineage linked to the recent outbreak of monkeypox. The identification of key mutations, particularly Class I variants, sheds light on the molecular mechanisms underlying the observed changes in the characteristics of circulating MPXV. Further studies can focus on functional domains affected by these mutations, enabling the development of effective control strategies against future monkeypox outbreaks.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Jian Yu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Hao Qin
- Department of Infectious Diseases, The Third People's Hospital of Hefei, Hefei, China
| | - Xinlei Chen
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Chuanchang Wu
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Xiaodan Hong
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Yafei Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China
| | - Zhenhua Zhang
- Institute of Clinical Virology, Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Furong Road 678, Hefei, 230601, Anhui, China.
| |
Collapse
|
16
|
Debroy R, Ramaiah S. Consolidated knowledge-guided computational pipeline for therapeutic intervention against bacterial biofilms - a review. BIOFOULING 2023; 39:928-947. [PMID: 38108207 DOI: 10.1080/08927014.2023.2294763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Biofilm-associated bacterial infections attributed to multifactorial antimicrobial resistance have caused worldwide challenges in formulating successful treatment strategies. In search of accelerated yet cost-effective therapeutics, several researchers have opted for bioinformatics-based protocols to systemize targeted therapies against biofilm-producing strains. The present review investigated the up-to-date computational databases and servers dedicated to anti-biofilm research to design/screen novel biofilm inhibitors (antimicrobial peptides/phytocompounds/synthetic compounds) and predict their biofilm-inhibition efficacy. Scrutinizing the contemporary in silico methods, a consolidated approach has been highlighted, referred to as a knowledge-guided computational pipeline for biofilm-targeted therapy. The proposed pipeline has amalgamated prominently employed methodologies in genomics, transcriptomics, interactomics and proteomics to identify potential target proteins and their complementary anti-biofilm compounds for effective functional inhibition of biofilm-linked pathways. This review can pave the way for new portals to formulate successful therapeutic interventions against biofilm-producing pathogens.
Collapse
Affiliation(s)
- Reetika Debroy
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Medical Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Sudha Ramaiah
- Medical and Biological Computing Laboratory, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
- Department of Bio-Sciences, School of Bio-Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| |
Collapse
|
17
|
Farzan M, Farzan M, Mirzaei Y, Aiman S, Azadegan-Dehkordi F, Bagheri N. Immunoinformatics-based multi-epitope vaccine design for the re-emerging monkeypox virus. Int Immunopharmacol 2023; 123:110725. [PMID: 37556996 DOI: 10.1016/j.intimp.2023.110725] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND On May 7, 2022, WHO reported a new monkeypox case. By May 2023 over 80,000 cases had been reported worldwide outside previously endemic nations. (This primarily affected the men who have sex with men (MSM) community in rich nations). The present research aims to develop a multi-epitope vaccine for the monkeypox virus (MPXV) using structural and cell surface proteins. METHODS The first part of the research involved retrieving protein sequences. The Immune Epitope Database (IEDB) was then used to analyze the B and T lymphocyte epitopes. After analyzing the sensitizing properties, toxicity, antigenicity, and molecular binding, appropriate linkers were utilizedto connect selected epitopes to adjuvants, and the structure of the vaccine was formulated. Algorithms from the field of immunoinformatics predicted the secondary and tertiary structures of vaccines. The physical, chemical, and structural properties were refined and validated to achieve maximum stability. Molecular docking and molecular dynamic simulations were subsequently employed to assess the vaccine's efficacy. Afterward, the ability of the vaccine to interact with toll-like receptors 3 and 4 (TLR3 and TLR4) was evaluated. Finally, the optimized sequence was then introduced into the Escherichia coli (E. coli) PET30A + vector. RESULTS An immunoinformatics evaluation suggested that such a vaccine might be safe revealed that this vaccine is safe, hydrophilic, temperature- and condition-stable, and can stimulate innate immunity by binding to TLR3 and TLR4. CONCLUSION Our findings suggest that the first step in MPXV pathogenesis is structural and cell surface epitopes. In this study, the most effective and promising epitopes were selected and designed throughprecision servers. Furthermore,through the utilization of multi-epitope structures and a combination of two established adjuvants, this research has the potential to be a landmarkin developing an antiviralvaccine against MPXV. However, additional in vitro and in vivo tests are required to confirm these results.
Collapse
Affiliation(s)
- Mahour Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mahan Farzan
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Yousef Mirzaei
- Department of Medical Biochemical Analysis, Cihan University-Erbil, Kurdistan Region, Iraq
| | - Sara Aiman
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fatemeh Azadegan-Dehkordi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Nader Bagheri
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
18
|
Ahmad S, Nazarian S, Alizadeh A, Pashapour Hajialilou M, Tahmasebian S, Alharbi M, Alasmari AF, Shojaeian A, Ghatrehsamani M, Irfan M, Pazoki-Toroudi H, Sanami S. Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins. J Biomol Struct Dyn 2023; 42:10617-10634. [PMID: 37713338 DOI: 10.1080/07391102.2023.2258403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/06/2023] [Indexed: 09/17/2023]
Abstract
In July 2022, Langya henipavirus (LayV) was identified in febrile patients in China. There is currently no approved vaccine against this virus. Therefore, this research aimed to design a multi-epitope vaccine against LayV using reverse vaccinology. The best epitopes were selected from LayV's fusion protein (F) and glycoprotein (G), and a multi-epitope vaccine was designed using these epitopes, adjuvant, and appropriate linkers. The physicochemical properties, antigenicity, allergenicity, toxicity, and solubility of the vaccine were evaluated. The vaccine's secondary and 3D structures were predicted, and molecular docking and molecular dynamics (MD) simulations were used to assess the vaccine's interaction and stability with toll-like receptor 4 (TLR4). Immune simulation, codon optimization, and in silico cloning of the vaccine were also performed. The vaccine candidate showed good physicochemical properties, as well as being antigenic, non-allergenic, and non-toxic, with acceptable solubility. Molecular docking and MD simulation revealed that the vaccine and TLR4 have stable interactions. Furthermore, immunological simulation of the vaccine indicated its ability to elicit immune responses against LayV. The vaccine's increased expression was also ensured using codon optimization. This study's findings were encouraging, but in vitro and in vivo tests are needed to confirm the vaccine's protective effect.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, Pakistan
- Department of Computer Sciences, Virginia Tech, Blacksburg, VA, USA
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Department of Natural Sciences, Lebanese American University, Beirut, Lebanon
| | - Shahin Nazarian
- Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA, USA
| | - Akram Alizadeh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Maryam Pashapour Hajialilou
- School of Metallurgy and Materials Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Shahram Tahmasebian
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah F Alasmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali Shojaeian
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Ghatrehsamani
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Muhammad Irfan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Physiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sanami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
19
|
Dhanushkumar T, Kamaraj B, Vasudevan K, Gopikrishnan M, Dasegowda KR, Rambabu M, George Priya Doss C. Structural immunoinformatics approach for rational design of a multi-epitope vaccine against triple negative breast cancer. Int J Biol Macromol 2023:125209. [PMID: 37271264 DOI: 10.1016/j.ijbiomac.2023.125209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
TNBC is a highly malignant breast cancer known for its aggressive behavior affecting young female adults. The standard treatment for TNBC includes surgery, chemotherapy, and radiotherapy, which often have significant side effects. Therefore, novel preventive methods are required to combat TNBC effectively. In this study, we utilized immunoinformatics to construct an in-silico vaccine against TNBC using the TRIM25 molecule via the reverse vaccinology method. Four vaccines were designed by generating T and B-cell epitopes linked with four different linkers. The modeled vaccine was docked and the results showed that vaccine-3 exhibited the highest affinity with the immune receptors. The molecular dynamics results revealed that the binding affinity and stability of Vaccine-3 were greater than those of Vaccine 2 complexes. This study has great potential preventive measures for TNBC, and further research is warranted to evaluate its efficacy in preclinical settings. This study presents an innovative preventive strategy for triple-negative breast cancer (TNBC) through immunoinformatics and reverse vaccinology to develop an in-silico vaccine. Leveraging these innovative techniques offers a novel avenue for combating the complex challenges associated with TNBC. This approach demonstrates considerable potential as a significant breakthrough in preventive measures for this particularly aggressive and malignant form of breast cancer.
Collapse
Affiliation(s)
- T Dhanushkumar
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Balu Kamaraj
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India.
| | - Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India
| | - K R Dasegowda
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - Majji Rambabu
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, India
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore, India.
| |
Collapse
|
20
|
Jiang F, Liu Y, Xue Y, Cheng P, Wang J, Lian J, Gong W. Developing a multiepitope vaccine for the prevention of SARS-CoV-2 and monkeypox virus co-infection: A reverse vaccinology analysis. Int Immunopharmacol 2023; 115:109728. [PMID: 36652758 PMCID: PMC9832108 DOI: 10.1016/j.intimp.2023.109728] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/01/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
BACKGROUND Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and monkeypox virus (MPXV) severely threaten human health; however, currently, no vaccine can prevent a co-infection with both viruses. METHODS Five antigens were selected to predict dominant T and B cell epitopes screened for immunogenicity, antigenicity, toxicity, and sensitization. After screening, all antigens joined in the construction of a novel multiepitope vaccine. The physicochemical and immunological characteristics, and secondary and tertiary structures of the vaccine were predicted and analyzed using bio- and immunoinformatics. Finally, codon optimization and cloning in-silico were performed. RESULTS A new multiepitope vaccine, named S7M8, was constructed based on four helper T lymphocyte (HTL) epitopes, six cytotoxic T lymphocyte (CTL) epitopes, five B cell epitopes, as well as Toll-like receptor (TLR) agonists. The antigenicity and immunogenicity scores of the S7M8 vaccine were 0.907374 and 0.6552, respectively. The S7M8 vaccine was comprised of 26.96% α-helices, the optimized Z-value of the tertiary structure was -5.92, and the favored area after majorization in the Ramachandran plot was 84.54%. Molecular docking showed that the S7M8 vaccine could tightly bind to TLR2 (-1100.6 kcal/mol) and TLR4 (-950.3 kcal/mol). In addition, the immune stimulation prediction indicated that the S7M8 vaccine could activate T and B lymphocytes to produce high levels of Th1 cytokines and antibodies. CONCLUSION S7M8 is a promising biomarker with good antigenicity, immunogenicity, non-toxicity, and non-sensitization. The S7M8 vaccine can trigger significantly high levels of Th1 cytokines and antibodies and may be a potentially powerful tool in preventing SARS-CoV-2 and MPXV.
Collapse
Affiliation(s)
- Fan Jiang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China; The Second Brigade of Cadet, Basic Medical Science Academy of Air Force Medical University, Xi'an, China; Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yinping Liu
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yong Xue
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Peng Cheng
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jie Wang
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China
| | - Jianqi Lian
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi'an, China.
| | - Wenping Gong
- Tuberculosis Prevention and Control Key Laboratory/Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The 8th Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|