1
|
Wang B, Zhang B, Wu M, Xu T. Unlocking therapeutic potential: Targeting lymphocyte activation Gene-3 (LAG-3) with fibrinogen-like protein 1 (FGL1) in systemic lupus erythematosus. J Transl Autoimmun 2024; 9:100249. [PMID: 39228513 PMCID: PMC11369448 DOI: 10.1016/j.jtauto.2024.100249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/21/2024] [Accepted: 07/26/2024] [Indexed: 09/05/2024] Open
Abstract
Systemic lupus erythematosus (SLE) represents an autoimmune disorder that affects multiple systems. In the treatment of this condition, the focus primarily revolves around inflammation suppression and immunosuppression. Consequently, targeted therapy has emerged as a prevailing approach. Currently, the quest for highly sensitive and specifically effective targets has gained significant momentum in the context of SLE treatment. Lymphocyte activation gene-3 (LAG-3) stands out as a crucial inhibitory receptor that binds to pMHC-II, thereby effectively dampening autoimmune responses. Fibrinogen-like protein 1 (FGL1) serves as the principal immunosuppressive ligand for LAG-3, and their combined action demonstrates a potent immunosuppressive effect. This intricate mechanism paves the way for potential SLE treatment by targeting LAG-3 with FGL1. This work provides a comprehensive summary of LAG-3's role in the pathogenesis of SLE and elucidates the feasibility of leveraging FGL1 as a therapeutic approach for SLE management. It introduces a novel therapeutic target and opens up new avenues of therapeutic consideration in the clinical context of SLE treatment.
Collapse
Affiliation(s)
- Bing Wang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Biqing Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Min Wu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Ting Xu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Alqurashi YE. Lymphocyte-activation gene 3 (LAG-3) as a promising immune checkpoint in cancer immunotherapy: From biology to the clinic. Pathol Res Pract 2024; 254:155124. [PMID: 38295462 DOI: 10.1016/j.prp.2024.155124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/02/2024]
Abstract
In recent years, there have been notable advancements in the field of cancer immunotherapy, namely in the area of immune checkpoint inhibition. The Lymphocyte-activation gene 3 (LAG-3) has garnered attention as a potentially valuable focus of study in this particular field. The present study examines the biological aspects of LAG-3, its clinical consequences, and the potential therapeutic opportunities associated with its modulation. LAG-3, similar to CD4, has a regulatory role in modulating the immune system. The upregulation of this protein inside the neoplastic milieu hampers the immune system's ability to mount an effective response, hence enabling the evasion of cancer cells from immune surveillance. The LAG-3 protein interacts with ligands, inhibiting cytotoxic immune cells such as CD8+ T cells and NK cells. The potential of LAG-3 inhibitors presents intriguing prospects. Integrating these medicines with established treatments like PD-1/PD-L1 or CTLA-4 inhibitors can broaden the range of available therapy choices and address resistance issues. The advent of personalized therapy is imminent, as evidenced by the utilization of predictive biomarkers such as LAG-3 expression to inform individualized therapeutic approaches. Additionally, inhibitors of LAG-3 exhibit promise in addressing immunological depletion and resistance by revitalizing T cells and producing durable immune responses. The realization of LAG-3's promise necessitates global collaboration and equal access. Multinational trials are expected to ascertain the efficacy of the intervention in various patient groups.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
| |
Collapse
|
3
|
Martínez-Domínguez SJ, García-Mateo S, Sainz-Arnal P, Martínez-García J, Gallego-Llera B, Lozano-Limones MJ, Hidalgo S, Gargallo-Puyuelo CJ, Latre-Santos M, Nocito-Colon MML, Martínez-Lostao L, Refaie E, Arroyo-Villarino MT, Del Rio-Nechaevsky M, Ramirez-Labrada A, Pardo J, Gomollón F, Baptista PM. Unravelling the cellular response to the SARS-COV-2 vaccine in inflammatory bowel disease patients on biologic drugs. Sci Rep 2023; 13:23061. [PMID: 38155275 PMCID: PMC10754931 DOI: 10.1038/s41598-023-50537-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023] Open
Abstract
Suboptimal vaccine response is a significant concern in patients with Inflammatory Bowel Disease (IBD) receiving biologic drugs. This single-center observational study involved 754 patients with IBD. In Phase I (October 2020-April 2021), 754 IBD participants who had not previously received the SARS-CoV-2 vaccine, underwent blood extraction to assess the seroprevalence of SARS-CoV-2 infection and IBD-related factors. Phase II (May 2021-October 2021) included a subgroup of 52 IBD participants with confirmed previous SARS-CoV-2 infection, who were studied for humoral and cellular response to the SARS-CoV-2 vaccine. In Phase I, treatment with anti-TNF was associated with lower rates of seroconversion (aOR 0.25 95% CI [0.10-0.61]). In Phase II, a significant increase in post-vaccination IgG levels was observed regardless of biologic treatment. However, patients treated with anti-TNF exhibited significantly lower IgG levels compared to those without IBD therapy (5.32 ± 2.47 vs. 7.99 ± 2.59 U/ml, p = 0.042). Following vaccination, a lymphocyte, monocyte, and NK cell activation pattern was observed, with no significant differences between patients receiving biologic drugs and those without IBD treatment. Despite lower seroprevalence and humoral response to the SARS-CoV-2 vaccine in patients treated with anti-TNF, the cellular response to the vaccine did not differ significantly from that patients without IBD therapy.
Collapse
Affiliation(s)
- Samuel J Martínez-Domínguez
- Digestive Diseases Department, University Hospital "Lozano Blesa", Av. San Juan Bosco, nº 15. PC: 50009, Zaragoza, Spain.
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain.
- University of Zaragoza, Zaragoza, Spain.
| | - Sandra García-Mateo
- Digestive Diseases Department, University Hospital "Lozano Blesa", Av. San Juan Bosco, nº 15. PC: 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
| | | | - Javier Martínez-García
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
| | | | | | - Sandra Hidalgo
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
| | - Carla J Gargallo-Puyuelo
- Digestive Diseases Department, University Hospital "Lozano Blesa", Av. San Juan Bosco, nº 15. PC: 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
| | - Marta Latre-Santos
- Digestive Diseases Department, University Hospital "Lozano Blesa", Av. San Juan Bosco, nº 15. PC: 50009, Zaragoza, Spain
| | | | - Luis Martínez-Lostao
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
- Immunology Department, University Hospital "Lozano Blesa", Zaragoza, Spain
- Institute of Nanoscience and Material of Aragón (INMA), Zaragoza, Spain
| | - Engy Refaie
- Scuola di Specializzazione in Chirurgia Generale, Università Degli Studi di Pavia Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Teresa Arroyo-Villarino
- Digestive Diseases Department, University Hospital "Lozano Blesa", Av. San Juan Bosco, nº 15. PC: 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
| | - Marcela Del Rio-Nechaevsky
- CIBEREnfermedadesRaras (CIBERER), Madrid, Spain
- Biomedical Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain
- IIS-Fundación Jiménez Díaz, Madrid, Spain
| | - Ariel Ramirez-Labrada
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Julián Pardo
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Fernando Gomollón
- Digestive Diseases Department, University Hospital "Lozano Blesa", Av. San Juan Bosco, nº 15. PC: 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- University of Zaragoza, Zaragoza, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Pedro M Baptista
- Aragón Health Research Institute (IIS Aragón), Zaragoza, Spain
- Biomedical Engineering Department, Universidad Carlos III de Madrid, Madrid, Spain
- CIBER Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
- Fundación ARAID, Zaragoza, Spain
| |
Collapse
|