1
|
Zhang X, Wu H, Gao T, Li Y, Zhong D, Li M, Li S, Ma C, Moon A, Fu Q, Qiu HJ, Sun Y. A recombinant pseudorabies virus surface - displaying the classical swine fever E2 protein induces specific antibodies rapidly. Vet Microbiol 2024; 298:110240. [PMID: 39255716 DOI: 10.1016/j.vetmic.2024.110240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
Pseudorabies virus (PRV) and classical swine fever virus (CSFV) are both economically important pathogens threatening the pig industry in many countries. The triple-gene-deleted variant of PRV, herein referred to as rPRVTJ-delgE/gI/TK, has exhibited pronounced efficacy and safety profiles. This underscores its viability as a prospective vaccine vector. However, the generation of specific anti-E2 antibodies necessitates elevated immunization doses and extended durations when the extracellular domain of the E2 protein of CSFV is secreted via the recombinant rPRVTJ-delgE/gI/TK vector. To enhance the presentation of exogenous antigens by antigen-presenting cells (APCs), we engineered the E2 protein expressed on the surface of PRV particles in this study. The recombinant virus expressing the E2 protein with a heterogonous transmembrane domain was generated in the backbone of rPRVTJ-delgE/gI/TK and designated as rPRVTJ-UL44-E2. The E2 gene was fused to the 3' terminus of the UL44 gene utilizing P2A, a self-cleaving peptide sequence. The electron microscopy showed that the E2 protein was anchored on the surface of the viral particles of rPRVTJ-delgE/gI/TK-E2. The insertion of the E2 gene did not alter the native biological characteristics of the viral vector. Rabbits immunized with 107 median tissue culture infective doses (TCID50) of rPRVTJ-UL44-E2 exhibited a rapid seroconversion to anti-E2 specific antibodies within 7 days post-immunization (dpi). All the rabbits immunized with the rPRVTJ-UL44-E2 had generated antibodies specific to E2 prior to the administration of the booster immunization. However, the immunized rabbits were not protected from the CSFV C-strain challenge. Nevertheless, this strategy has notably achieved rapid induction of E2-specific non-neutralizing antibodies. These findings provide insights that the design of rPRVTJ-UL44-E2 requires optimization, thereby indicating a promising avenue for augmenting vaccine-induced immune responses.
Collapse
Affiliation(s)
- Xinyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China
| | - Hongxia Wu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Tianqi Gao
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Yongfeng Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Dailang Zhong
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Mingzhi Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Shuwen Li
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China
| | - Caoyuan Ma
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Assad Moon
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China
| | - Qiang Fu
- College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China.
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China; College of Life Science and Engineering, Foshan University, 33 Guangyun Road, Foshan, Guangdong 528231, China.
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention Harbin Veterinary Research Institute, CAAS 678 Haping Road, Harbin, Heilongjiang 150069, China.
| |
Collapse
|
2
|
Jiao XQ, Liu Y, Chen XM, Wang CY, Cui JT, Zheng LL, Ma SJ, Chen HY. Construction and Immunogenicity of a Recombinant Porcine Pseudorabies Virus (PRV) Expressing the Major Neutralizing Epitope Regions of S1 Protein of Variant PEDV. Viruses 2024; 16:1580. [PMID: 39459914 PMCID: PMC11512226 DOI: 10.3390/v16101580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 10/07/2024] [Indexed: 10/28/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection causes severe diarrhea and high mortality in neonatal piglets. Pseudorabies causes acute and often fatal infections in young piglets, respiratory disorders in growing pigs, and reproductive failure in sows. In late 2011, pseudorabies virus (PRV) variants occurred in Bartha-K61-vaccine-immunized swine herds, resulting in economic losses to the global pig industry. Therefore, it is essential to develop a safe and effective vaccine against both PEDV and PRV infections. In this study, we constructed a recombinant virus rPRV-PEDV S1 expressing the major neutralizing epitope region (COE, SS2, and SS6) of the PEDV S1 protein by homologous recombination technology and CRISPR/Cas9 gene editing technology, and then evaluated its biological characteristics in vitro and immunogenicity in pigs. The recombinant virus rPRV-PEDV S1 had similar growth kinetics in vitro to the parental rPRV NY-gE-/gI-/TK- strain, and was proven genetically stable in swine testicle (ST) cells and safe for piglets. PEDV S1-specific antibodies were detected in piglets immunized with rPRV-PEDV S1 on the 7th day post-immunization (dpi), and the antibody level increased rapidly at 14-21 dpi. Moreover, the immunized piglets receiving the recombinant virus exhibited alleviated clinical signs and reduced viral load compared to the unvaccinated group following a virulent PEDV HN2021 strain challenge. Also, piglets immunized with rPRV-PEDV S1 developed a PRV-specific humoral immune response and elicited complete protection against a lethal PRV NY challenge. These data indicate that the recombinant rPRV-PEDV S1 is a promising vaccine candidate strain for the prevention and control of PEDV and PRV infections.
Collapse
MESH Headings
- Animals
- Porcine epidemic diarrhea virus/immunology
- Porcine epidemic diarrhea virus/genetics
- Swine
- Herpesvirus 1, Suid/immunology
- Herpesvirus 1, Suid/genetics
- Swine Diseases/prevention & control
- Swine Diseases/virology
- Swine Diseases/immunology
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Viral Vaccines/immunology
- Viral Vaccines/genetics
- Epitopes/immunology
- Epitopes/genetics
- Coronavirus Infections/prevention & control
- Coronavirus Infections/veterinary
- Coronavirus Infections/immunology
- Coronavirus Infections/virology
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Pseudorabies/prevention & control
- Pseudorabies/immunology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- Xian-Qin Jiao
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Ying Liu
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Xi-Meng Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Cheng-Yuan Wang
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Jian-Tao Cui
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
- Animal Health Supervision Institute, Honghu 433200, China
| | - Lan-Lan Zheng
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Shi-Jie Ma
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| | - Hong-Ying Chen
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China; (X.-Q.J.); (Y.L.); (X.-M.C.); (C.-Y.W.); (J.-T.C.); (L.-L.Z.)
| |
Collapse
|
3
|
Bude SA, Lu Z, Zhao Z, Zhang Q. Pseudorabies Virus Glycoproteins E and B Application in Vaccine and Diagnosis Kit Development. Vaccines (Basel) 2024; 12:1078. [PMID: 39340108 PMCID: PMC11435482 DOI: 10.3390/vaccines12091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Pseudorabies virus (PRV) is a highly infectious pathogen that affects a wide range of mammals and imposes a significant economic burden on the global pig industry. The viral envelope of PRV contains several glycoproteins, including glycoprotein E (gE) and glycoprotein B (gB), which play critical roles in immune recognition, vaccine development, and diagnostic procedures. Mutations in these glycoproteins may enhance virulence, highlighting the need for updated vaccines. Method: This review examines the functions of PRV gE and gB in vaccine development and diagnostics, focusing on their roles in viral replication, immune system interaction, and pathogenicity. Additionally, we explore recent findings on the importance of gE deletion in attenuated vaccines and the potential of gB to induce immunity. Results: Glycoprotein E (gE) is crucial for the virus's axonal transport and nerve invasion, facilitating transmission to the central nervous system. Deletion of gE is a successful strategy in vaccine development, enhancing the immune response. Glycoprotein B (gB) plays a central role in viral replication and membrane fusion, aiding viral spread. Mutations in these glycoproteins may increase PRV virulence, complicating vaccine efficacy. Conclusion: With PRV glycoproteins being essential to both vaccine development and diagnostic approaches, future research should focus on enhancing these components to address emerging PRV variants. Updated vaccines and diagnostic tools are critical for combating new, more virulent strains of PRV.
Collapse
Affiliation(s)
- Sara Amanuel Bude
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu P.O. Box 34, Ethiopia
| | - Zengjun Lu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Zhixun Zhao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| | - Qiang Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (S.A.B.); (Z.L.)
| |
Collapse
|
4
|
Xiang G, Wang M, Wang P, Li R, Gao C, Li Y, Liang X, Liu Y, Xu A, Tang J. Enhanced Anti-Tumor Response Elicited by a Novel Oncolytic Pseudorabies Virus Engineered with a PD-L1 Inhibitor. Viruses 2024; 16:1228. [PMID: 39205202 PMCID: PMC11359363 DOI: 10.3390/v16081228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Oncolytic viruses combined with immunotherapy offer significant potential in tumor therapy. In this study, we engineered a further attenuated pseudorabies virus (PRV) vaccine strain that incorporates a PD-L1 inhibitor and demonstrated its promise as an oncolytic virus in tumor therapy. We first showed that the naturally attenuated PRV vaccine strain Bartha can efficiently infect tumor cells from multiple species, including humans, mice, and dogs in vitro. We then evaluated the safety and anti-tumor efficacy of this vaccine strain and its different single-gene deletion mutants using the B16-F10 melanoma mouse model. The TK deletion strain emerged as the optimal vector, and we inserted a PD-L1 inhibitor (iPD-L1) into it using CRISPR/Cas9 technology. Compared with the control, the recombinant PRV (rPRV-iPD-L1) exhibited more dramatic anti-tumor effects in the B16-F10 melanoma mouse model. Our study suggests that PRV can be developed not only as an oncolytic virus but also a powerful vector for expressing foreign genes to modulate the tumor microenvironment.
Collapse
Affiliation(s)
- Guangtao Xiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Mengdong Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- Cytovaxis Biotechnologies Inc., Guangzhou 510760, China
| | - Rifei Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chao Gao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yue Li
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xinxin Liang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yun Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Aotian Xu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Tang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
5
|
Yu W, Liu J, Liu Y, Forlenza M, Chen H. Application of CRISPR/Cas9 for Rapid Genome Editing of Pseudorabies Virus and Bovine Herpesvirus-1. Viruses 2024; 16:311. [PMID: 38400086 PMCID: PMC10892916 DOI: 10.3390/v16020311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The CRISPR/Cas9 system is widely used to manipulate viral genomes. Although Alphaherpesvirinae genomes are large and complicated to edit, in recent years several Pseudorabies virus (PRV) mutants have been successfully generated using the CRISPR/Cas9 system. However, the application of CRISPR/Cas9 editing on another member of alpha herpesviruses, bovine herpesvirus-1 (BHV-1), is rarely reported. This paper reports a rapid and straightforward approach to manipulating herpesviruses genome using CRISPR/Cas9. The recombinant plasmids contained the left and right arm of the thymidine kinase (TK) gene of PRV or of the glycoprotein I (gI) and glycoprotein E (gE) of BHV-1. Upon the cleavage of the TK or gIgE gene by Cas9 protein, this was replaced by the enhanced green fluorescence protein (eGFP) by homologous recombination. With this approach, we generated recombinant TK-/eGFP+ PRV and gIgE-/eGFP+ BHV-1 mutants and then proceeded to characterize their biological activities in vitro and in vivo. In conclusion, we showed that alpha herpesvirus, including PRV and BHV-1, can be rapidly edited using the CRISPR/Cas9 approach paving the way to the development of animal herpesvirus vaccines.
Collapse
Affiliation(s)
- Wanqi Yu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.Y.); (J.L.); (Y.L.)
- Institute of Animal Sciences, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.Y.); (J.L.); (Y.L.)
| | - Yingnan Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.Y.); (J.L.); (Y.L.)
| | - Maria Forlenza
- Institute of Animal Sciences, Wageningen University and Research, 6708 WD Wageningen, The Netherlands
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China; (W.Y.); (J.L.); (Y.L.)
| |
Collapse
|
6
|
Wei J, Liu C, He X, Abbas B, Chen Q, Li Z, Feng Z. Generation and Characterization of Recombinant Pseudorabies Virus Delivering African Swine Fever Virus CD2v and p54. Int J Mol Sci 2023; 25:335. [PMID: 38203508 PMCID: PMC10779401 DOI: 10.3390/ijms25010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
African swine fever (ASF) leads to high mortality in domestic pigs and wild boar, and it is caused by the African swine fever virus (ASFV). Currently, no commercially available vaccine exists for its prevention in China. In this study, we engineered a pseudorabies recombinant virus (PRV) expressing ASFV CD2v and p54 proteins (PRV-∆TK-(CD2v)-∆gE-(p54)) using CRISPR/Cas9 and homologous recombination technology. PRV-∆TK-(CD2v)-∆gE-(p54) effectively delivers CD2v and p54, and it exhibits reduced virulence. Immunization with PRV-∆TK-(CD2v)-∆gE-(p54) neither induces pruritus nor causes systemic infection and inflammation. Furthermore, a double knockout of the TK and gE genes eliminates the depletion of T, B, and monocytes/macrophages in the blood caused by wild-type viral infection, decreases the proliferation of granulocytes to eliminate T-cell immunosuppression from granulocytes, and enhances the ability of the immune system against PRV infection. An overexpression of CD2v and p54 proteins does not alter the characteristics of PRV-∆TK/∆gE. Moreover, PRV-∆TK-(CD2v)-∆gE-(p54) successfully induces antibody production via intramuscular (IM) vaccination and confers effective protection for vaccinated mice upon challenge. Thus, PRV-∆TK-(CD2v)-∆gE-(p54) demonstrates good immunogenicity and safety, providing highly effective protection against PRV and ASFV. It potentially represents a suitable candidate for the development of a bivalent vaccine against both PRV and ASFV infections.
Collapse
Affiliation(s)
- Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Chuancheng Liu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Xinyan He
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Bilal Abbas
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| | - Zhaolong Li
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350117, China
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou 350117, China; (J.W.); (C.L.); (X.H.); (B.A.); (Q.C.)
| |
Collapse
|