1
|
Adamek K, Jones AMP, Torkamaneh D. Somatic Mutation Accumulations in Micropropagated Cannabis Are Proportional to the Number of Subcultures. PLANTS (BASEL, SWITZERLAND) 2024; 13:1910. [PMID: 39065436 PMCID: PMC11279941 DOI: 10.3390/plants13141910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
Advancements in micropropagation techniques have made it easier to produce large numbers of cannabis clones, but these methods may also introduce genetic instability over successive generations. This instability often manifests as somaclonal variation, characterized by the progressive accumulation of genetic mutations or epigenetic alterations with each subculture. In this study, we examined how mutations accumulate in cannabis clones subjected to 6-11 subcultures. Using genotyping-by-sequencing, we identified 9405 polymorphic variants across 70 clones. The analysis revealed a correlation between the number of subcultures and the frequency of these mutations, revealing that genetic changes accumulate over successive subcultures despite clones sharing the same chronological age. Furthermore, we evaluated the functional impacts of accumulated mutations, with particular attention to implications on gene function and overall plant health. While rare, 14 high-impact variants were identified in genes that are important for plant development. Notably, six variants were also found in genes related to cannabinoid and terpene synthesis pathways, potentially affecting the plant's biochemical composition. These findings highlight the need for genetic assessments in micropropagation protocols, impacting plant breeding and conservation. Understanding genetic variations in clonally propagated plants optimizes practices for stability. Crucial for cannabis and horticultural plants, it emphasizes techniques to prevent genetic decay and ensure viability.
Collapse
Affiliation(s)
- Kristian Adamek
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada; (K.A.); (A.M.P.J.)
| | | | - Davoud Torkamaneh
- Département de Phytologie, Université Laval, Québec, QC G1V 0A6, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC G1V 0A6, Canada
- Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Québec, QC G1V 0A6, Canada
- Institute Intelligence and Data (IID), Université Laval, Québec, QC G1V 0A6, Canada
| |
Collapse
|
2
|
Holweg MMSF, Kaiser E, Kappers IF, Heuvelink E, Marcelis LFM. The role of red and white light in optimizing growth and accumulation of plant specialized metabolites at two light intensities in medical cannabis ( Cannabis sativa L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1393803. [PMID: 38957608 PMCID: PMC11217568 DOI: 10.3389/fpls.2024.1393803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The cultivation of medical cannabis (Cannabis sativa L.) is expanding in controlled environments, driven by evolving governmental regulations for healthcare supply. Increasing inflorescence weight and plant specialized metabolite (PSM) concentrations is critical, alongside maintaining product consistency. Medical cannabis is grown under different spectra and photosynthetic photon flux densities (PPFD), the interaction between spectrum and PPFD on inflorescence weight and PSM attracts attention by both industrialists and scientists. Plants were grown in climate-controlled rooms without solar light, where four spectra were applied: two low-white spectra (7B-20G-73R/Narrow and 6B-19G-75R/2Peaks), and two high-white (15B-42G-43R/Narrow and 17B-40G-43R/Broad) spectra. The low-white spectra differed in red wavelength peaks (100% 660 nm, versus 50:50% of 640:660 nm), the high-white spectra differed in spectrum broadness. All four spectra were applied at 600 and 1200 μmol m-2 s-1. Irrespective of PPFD, white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased inflorescence weight, compared to white light with a single red peak of 660 nm (7B-20G-73R/Narrow) (tested at P = 0.1); this was associated with higher total plant dry matter production and a more open plant architecture, which likely enhanced light capture. At high PPFD, increasing white fraction and spectrum broadness (17B-40G-43R/Broad) produced similar inflorescence weights compared to white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks). This was caused by an increase of both plant dry matter production and dry matter partitioning to the inflorescences. No spectrum or PPFD effects on cannabinoid concentrations were observed, although at high PPFD white light with a dual red peak of 640 and 660 nm (6B-19G-75R/2Peaks) increased terpenoid concentrations compared to the other spectra. At low PPFD, the combination of white light with 640 and 660 nm increased photosynthetic efficiency compared with white light with a single red peak of 660nm, indicating potential benefits in light use efficiency and promoting plant dry matter production. These results indicate that the interaction between spectrum and PPFD influences plant dry matter production. Dividing the light energy in the red waveband over both 640 and 660 nm equally shows potential in enhancing photosynthesis and plant dry matter production.
Collapse
Affiliation(s)
| | - Elias Kaiser
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Wageningen University, Wageningen, Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
3
|
Buirs L, Punja ZK. Integrated Management of Pathogens and Microbes in Cannabis sativa L. (Cannabis) under Greenhouse Conditions. PLANTS (BASEL, SWITZERLAND) 2024; 13:786. [PMID: 38592798 PMCID: PMC10974757 DOI: 10.3390/plants13060786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
The increased cultivation of high THC-containing Cannabis sativa L. (cannabis), particularly in greenhouses, has resulted in a greater incidence of diseases and molds that can negatively affect the growth and quality of the crop. Among them, the most important diseases are root rots (Fusarium and Pythium spp.), bud rot (Botrytis cinerea), powdery mildew (Golovinomyces ambrosiae), cannabis stunt disease (caused by hop latent viroid), and a range of microbes that reduce post-harvest quality. An integrated management approach to reduce the impact of these diseases/microbes requires combining different approaches that target the reproduction, spread, and survival of the associated pathogens, many of which can occur on the same plant simultaneously. These approaches will be discussed in the context of developing an integrated plan to manage the important pathogens of greenhouse-grown cannabis at different stages of plant development. These stages include the maintenance of stock plants, propagation through cuttings, vegetative growth of plants, and flowering. The cultivation of cannabis genotypes with tolerance or resistance to various pathogens is a very important approach, as well as the maintenance of pathogen-free stock plants. When combined with cultural approaches (sanitation, management of irrigation, and monitoring for diseases) and environmental approaches (greenhouse climate modification), a significant reduction in pathogen development and spread can be achieved. The use of preventive applications of microbial biological control agents and reduced-risk biorational products can also reduce disease development at all stages of production in jurisdictions where they are registered for use. The combined use of promising strategies for integrated disease management in cannabis plants during greenhouse production will be reviewed. Future areas for research are identified.
Collapse
Affiliation(s)
- Liam Buirs
- Pure Sunfarms Corp., Delta, BC V4K 3N3, Canada;
| | - Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
4
|
Atallah OO, Yassin SM, Verchot J. New Insights into Hop Latent Viroid Detection, Infectivity, Host Range, and Transmission. Viruses 2023; 16:30. [PMID: 38257731 PMCID: PMC10819085 DOI: 10.3390/v16010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Hop latent viroid (HLVd), a subviral pathogen from the family Pospiviroidae, is a major threat to the global cannabis industry and is the causative agent for "dudding disease". Infected plants can often be asymptomatic for a period of growth and then develop symptoms such as malformed and yellowing leaves, as well as stunted growth. During flowering, HLVd-infected plants show reduced levels of valuable metabolites. This study was undertaken to expand our basic knowledge of HLVd infectivity, transmission, and host range. HLVd-specific primers were used for RT-PCR detection in plant samples and were able to detect HLVd in as little as 5 picograms of total RNA. A survey of hemp samples obtained from a diseased production system proved sole infection of HLVd (72%) with no coexistence of hop stunt viroid. HLVd was infectious through successive passage assays using a crude sap or total RNA extract derived from infected hemp. HLVd was also highly transmissible through hemp seeds at rates of 58 to 80%. Host range assays revealed new hosts for HLVd: tomato, cucumber, chrysanthemum, Nicotiana benthamiana, and Arabidopsis thaliana (Col-0). Sequence analysis of 77 isolates revealed only 3 parsimony-informative sites, while 10 sites were detected among all HLVd isolates available in the GenBank. The phylogenetic relationship among HLVd isolates allowed for inferring two major clades based on the genetic distance. Our findings facilitate further studies on host-viroid interaction and viroid management.
Collapse
Affiliation(s)
| | | | - Jeanmarie Verchot
- Department of Plant Pathology & Microbiology, Texas A&M University, College Station, TX 77843, USA; (O.O.A.); (S.M.Y.)
| |
Collapse
|
5
|
Punja ZK, Kahl D, Reade R, Xiang Y, Munz J, Nachappa P. Challenges to Cannabis sativa Production from Pathogens and Microbes-The Role of Molecular Diagnostics and Bioinformatics. Int J Mol Sci 2023; 25:14. [PMID: 38203190 PMCID: PMC10779078 DOI: 10.3390/ijms25010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/12/2024] Open
Abstract
The increased cultivation of Cannabis sativa L. in North America, represented by high Δ9-tetrahydrocannabinol-containing (high-THC) cannabis genotypes and low-THC-containing hemp genotypes, has been impacted by an increasing number of plant pathogens. These include fungi which destroy roots, stems, and leaves, in some cases causing a build-up of populations and mycotoxins in the inflorescences that can negatively impact quality. Viroids and viruses have also increased in prevalence and severity and can reduce plant growth and product quality. Rapid diagnosis of the occurrence and spread of these pathogens is critical. Techniques in the area of molecular diagnostics have been applied to study these pathogens in both cannabis and hemp. These include polymerase chain reaction (PCR)-based technologies, including RT-PCR, multiplex RT-PCR, RT-qPCR, and ddPCR, as well as whole-genome sequencing (NGS) and bioinformatics. In this study, examples of how these technologies have enhanced the rapidity and sensitivity of pathogen diagnosis on cannabis and hemp will be illustrated. These molecular tools have also enabled studies on the diversity and origins of specific pathogens, specifically viruses and viroids, and these will be illustrated. Comparative studies on the genomics and metabolomics of healthy and diseased plants are urgently needed to provide insight into their impact on the quality and composition of cannabis and hemp-derived products. Management of these pathogens will require monitoring of their spread and survival using the appropriate technologies to allow accurate detection, followed by appropriate implementation of disease control measures.
Collapse
Affiliation(s)
- Zamir K. Punja
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Dieter Kahl
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Ron Reade
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Yu Xiang
- Agriculture and Agri-Food Canada, Summerland Research and Development Center, Summerland, BC V5A 1S6, Canada; (D.K.); (R.R.); (Y.X.)
| | - Jack Munz
- 3 Rivers Biotech, Coquitlam, BC V5A 1S6, Canada;
| | - Punya Nachappa
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA;
| |
Collapse
|
6
|
Miotti N, Passera A, Ratti C, Dall'Ara M, Casati P. A Guide to Cannabis Virology: From the Virome Investigation to the Development of Viral Biotechnological Tools. Viruses 2023; 15:1532. [PMID: 37515219 PMCID: PMC10384868 DOI: 10.3390/v15071532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Cannabis sativa cultivation is experiencing a period of renewed interest due to the new opportunities for its use in different sectors including food, techno-industrial, construction, pharmaceutical and medical, cosmetics, and textiles. Moreover, its properties as a carbon sequestrator and soil improver make it suitable for sustainable agriculture and climate change mitigation strategies. The increase in cannabis cultivation is generating conditions for the spread of new pathogens. While cannabis fungal and bacterial diseases are better known and characterized, viral infections have historically been less investigated. Many viral infection reports on cannabis have recently been released, highlighting the increasing threat and spread of known and unknown viruses. However, the available information on these pathogens is still incomplete and fragmentary, and it is therefore useful to organize it into a single structured document to provide guidance to growers, breeders, and academic researchers. This review aims to present the historical excursus of cannabis virology, from the pioneering descriptions of virus-like symptoms in the 1940s/50s to the most recent high-throughput sequencing reports. Each of these viruses detected in cannabis will be categorized with an increasing degree of threat according to its potential risk to the crop. Lastly, the development of viral vectors for functional genetics studies will be described, revealing how cannabis virology is evolving not only for the characterization of its virome but also for the development of biotechnological tools for the genetic improvement of this crop.
Collapse
Affiliation(s)
- Niccolò Miotti
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Alessandro Passera
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Claudio Ratti
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Mattia Dall'Ara
- Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Viale Giuseppe Fanin 40, 40127 Bologna, Italy
| | - Paola Casati
- Department of Agricultural and Food Sciences-Production, Landscape, Agroenergy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| |
Collapse
|
7
|
Fernandez I Marti A, Parungao M, Hollin J, Selimotic B, Farrar G, Seyler T, Anand A, Ahmad R. A Novel, Precise and High-Throughput Technology for Viroid Detection in Cannabis (MFDetect TM). Viruses 2023; 15:1487. [PMID: 37515174 PMCID: PMC10385567 DOI: 10.3390/v15071487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Hop latent viroid (HLVd) is a severe disease of cannabis, causing substantial economic losses in plant yield and crop value for growers worldwide. The best way to control the disease is early detection to limit the spread of the viroid in grow facilities. This study describes MFDetectTM as a rapid, highly sensitive, and high-throughput tool for detecting HLVd in the early stages of plant development. Furthermore, in the largest research study conducted so far for HLVd detection in cannabis, we compared MFDetectTM with quantitative RT-PCR in a time course experiment using different plant tissues, leaves, petioles, and roots at different plant developmental stages to demonstrate both technologies are comparable. Our study found leaf tissue is a suitable plant material for HLVd detection, with the viroid titer increasing in the infected leaf tissue with the age of plants. The study showed that other tissue types, including petiole and roots, were equally sensitive to detection via MFDetectTM. The assay developed in this research allows the screening of thousands of plants in a week. The assay can be scaled easily to provide growers with a quick turnaround and a cost-effective diagnostic tool for screening many plants and tissue types at different stages of development.
Collapse
Affiliation(s)
- Angel Fernandez I Marti
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA 94720, USA
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Marcus Parungao
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Jonathan Hollin
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Berin Selimotic
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Graham Farrar
- Glass House Farms, 645 W Laguna Road, Camarillo, CA 93012, USA
| | - Tristan Seyler
- Glass House Farms, 645 W Laguna Road, Camarillo, CA 93012, USA
| | - Ajith Anand
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| | - Riaz Ahmad
- MyFloraDNA, Inc., 1451 River Park Dr., Sacramento, CA 95815, USA
| |
Collapse
|