1
|
De Koch MD, Krupovic M, Fielding R, Smith K, Schiavone K, Hall KR, Reid VS, Boyea D, Smith EL, Schmidlin K, Fontenele RS, Koonin EV, Martin DP, Kraberger S, Varsani A. Novel lineage of anelloviruses with large genomes identified in dolphins. J Virol 2024:e0137024. [PMID: 39665547 DOI: 10.1128/jvi.01370-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024] Open
Abstract
Anellovirus infections are ubiquitous in mammals but lack any clear disease association, suggesting a commensal virus-host relationship. Although anelloviruses have been identified in numerous mammalian hosts, their presence in members of the family Delphinidae has yet to be reported. Here, using a metagenomic approach, we characterize complete anellovirus genomes (n = 69) from four Delphinidae host species: short-finned pilot whale (Globicephala macrorhynchus, n = 19), killer whale (Orcinus orca, n = 9), false killer whale (Pseudorca crassidens, n = 6), and pantropical spotted dolphin (Steno attenuatus, n = 1). Sequence comparison of the open reading frame 1 (ORF1) encoding the capsid protein, the only conserved gene shared by all anelloviruses, shows that the Delphinidae anelloviruses form a novel genus-level clade that encompasses 22 unique species-level groupings. We provide evidence that different Delphinidae species can be co-infected by multiple anelloviruses belonging to distinct species groupings. Notably, the ORF1 protein of the Delphinidae anelloviruses is considerably larger than those encoded by all previously described anelloviruses from other hosts (spanning 14 vertebrate orders and including 27 families). Comprehensive analysis of the ORF1 sequences and predicted protein structures showed that the increased size of these proteins results from divergent elaborations within the capsid-distal P2 subdomain and elongation of the C-terminal domain of ORF1. Comparative structural and phylogenetic analyses suggest that acquisition of the P2 subdomain and its diversification occurred convergently in the anelloviruses associated with primate and Delphinidae hosts. Collectively, our results further the appreciation of diversity and evolution of the ubiquitous and enigmatic viruses in the family Anelloviridae. IMPORTANCE Anelloviruses are ubiquitous in mammals, but their infection has not yet been linked to any disease, suggesting a commensal virus-host relationship. Here, we describe the first anelloviruses associated with diverse species of dolphins. The dolphinid anelloviruses represent a new genus (tentatively named "Qoptorquevirus") and encode open reading frame 1 (ORF1) (capsid) proteins that are considerably larger than those encoded by previously described anelloviruses from other hosts. Comprehensive analysis of the ORF1 sequences and predicted protein structures revealed the underlying structural basis for such an extravagant ORF1 size and suggested that ORF1 size increased convergently in the anelloviruses associated with primate and Delphinidae hosts, respectively. Collectively, our results provide insights into the diversity and evolution of Anelloviridae. Further exploration of the anellovirus diversity, especially in the host species that have not yet been sampled, is expected to further clarify their evolutionary trajectory and explain the unusual virus-host commensal relationship.
Collapse
Affiliation(s)
- Matthew D De Koch
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - Russell Fielding
- HTC Honors College, Coastal Carolina University, Conway, South Carolina, USA
| | - Kendal Smith
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Kelsie Schiavone
- Department of Earth and Environmental Systems, The University of the South, Sewanee, Tennessee, USA
| | - Katharine R Hall
- Department of Earth and Environmental Systems, The University of the South, Sewanee, Tennessee, USA
| | - Vincent S Reid
- Barrouallie Whaler's Project, Barrouallie, Saint Vincent and the Grenadines
| | - Diallo Boyea
- Independent Researcher, Barrouallie, Saint Vincent and the Grenadines
| | - Emma L Smith
- Department of Chemical and Biological Sciences, The University of the West Indies at Cave Hill, Bridgetown, Saint Michael, Barbados
| | - Kara Schmidlin
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Rafaela S Fontenele
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USA
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Observatory, Western Cape, South Africa
| | - Simona Kraberger
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Arvind Varsani
- The Biodesign Center for Fundamental and Applied Microbiomics, Center for Evolution and Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Structural Biology Research Unit, Department of Integrative Biomedical Sciences, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
2
|
Do ED, Holland SC, Kaelin EA, Mitchell C, Soria J, La Rosa A, Ticona E, Coombs RW, Frenkel LM, Bull ME, Lim ES. Genome sequences of human anelloviruses in the Lamedtorquevirus, Memtorquevirus, and Samektorquevirus genera identified from the female genital tract. Microbiol Resour Announc 2024; 13:e0058224. [PMID: 39101720 PMCID: PMC11385962 DOI: 10.1128/mra.00582-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 08/06/2024] Open
Abstract
We identified and characterized seven anellovirus genome sequences in the female genital tract through virome metagenomic sequencing of cervicovaginal lavage specimens from women living with HIV in Peru. Phylogenetic and genomic analyses indicate that they belong to three newly proposed Lamedtorquevirus, Memtorquevirus, and Samektorquevirus genera in the Anelloviridae family.
Collapse
Affiliation(s)
- Eric D Do
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Steven C Holland
- Center for Fundamental and Applied Microbiomics, the Biodesign Institute, Tempe, Arizona, USA
| | - Emily A Kaelin
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, the Biodesign Institute, Tempe, Arizona, USA
| | - Caroline Mitchell
- Department of Obstretrics and Gynecology, University of Washington, Seattle, Washington, USA
| | - Jaime Soria
- Infectious Diseases Departmento, Hospital Nacional Dos de Mayo, Universidad de San Marcos, Lima, Peru
| | - Alberto La Rosa
- Asociaciòn Civil Impacta Salud y Educación, Lima, Peru
- MSD Peru, Lima, Peru
| | - Eduardo Ticona
- Infectious Diseases Departamento, Hospital Nacional Dos de Mayo, Asociaciòn Civil Impacta Salud y Educación, Universidad de San Marcos, Lima, Peru
| | - Robert W Coombs
- Departments of Medicine; Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Lisa M Frenkel
- Departments of Medicine; Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Marta E Bull
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Efrem S Lim
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Fundamental and Applied Microbiomics, the Biodesign Institute, Tempe, Arizona, USA
| |
Collapse
|
3
|
Laubscher F, Kaiser L, Cordey S. SCANellome V2: Update of the Primate Anellovirus Reference Sequences Database. Viruses 2024; 16:1349. [PMID: 39339826 PMCID: PMC11435895 DOI: 10.3390/v16091349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Anelloviruses are ubiquitous in humans and represent a major component of the human virome. Its best-known representative is Torque teno virus (i.e., the Alphatorquevirus genus), which is considered a potential immunity biomarker. Recent metagenomic investigations revealed not only the extraordinary genomic diversity of anellovirus sequences, but also that co-detection of genera, genotypes, or species seems to be the rule in humans. SCANellome was developed to represent a user-friendly tool to analyze the primate (both human and non-human) anellovirus composition at the genus, species, and genotype level from metagenomics data based on an up-to-date database. This SCANellome update includes >900 additional reference sequences from GenBank. Using a clustering at 90% identity, the FASTA database was updated and generated 134 new representative sequences. Based on ORF1, the analysis of these new sequences indicates the presence of 206 potential new species, including four nonhuman primates, and adds four new non-human primate species which will be the subject of a proposal to the International Committee on Taxonomy of Viruses (ICTV). In addition, SCANellome V2 provides now the user with an interactive up-to-date phylogenetic analysis (of ORF1) to show the distribution among the 12 human and nonhuman primate genera of these new potential species. Finally, the Anelloviridae taxonomy was updated to rename species names in binomial format as required by the ICTV.
Collapse
Affiliation(s)
- Florian Laubscher
- Laboratory of Virology, Department of Diagnostics, Geneva University Hospitals & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (F.L.); (L.K.)
| | - Laurent Kaiser
- Laboratory of Virology, Department of Diagnostics, Geneva University Hospitals & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (F.L.); (L.K.)
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Samuel Cordey
- Laboratory of Virology, Department of Diagnostics, Geneva University Hospitals & Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland; (F.L.); (L.K.)
| |
Collapse
|
4
|
Focosi D, Spezia PG, Maggi F. The Emerging Tool of the Human Anellovirome. Viruses 2024; 16:990. [PMID: 38932281 PMCID: PMC11209283 DOI: 10.3390/v16060990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The blood virome is dominated by the Anelloviridae family, which emerges early in life; the anellome, which represents the variety of anelloviruses within an individual, stabilizes by adulthood [...].
Collapse
Affiliation(s)
- Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Pietro Giorgio Spezia
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy;
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases Lazzaro Spallanzani-IRCCS, 00149 Rome, Italy;
| |
Collapse
|
5
|
Timmerman AL, Commandeur L, Deijs M, Burggraaff MGJM, Lavell AHA, van der Straten K, Tejjani K, van Rijswijk J, van Gils MJ, Sikkens JJ, Bomers MK, van der Hoek L. The Impact of First-Time SARS-CoV-2 Infection on Human Anelloviruses. Viruses 2024; 16:99. [PMID: 38257799 PMCID: PMC10818381 DOI: 10.3390/v16010099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the Anelloviridae family dominate the blood virome, emerging early in life. The anellome, representing the variety of anelloviruses within an individual, stabilizes by adulthood. Despite their supposedly commensal nature, elevated anellovirus concentrations under immunosuppressive treatment indicate an equilibrium controlled by immunity. Here, we investigated whether anelloviruses are sensitive to the immune activation that accompanies a secondary infection. As a model, we investigated 19 health care workers (HCWs) with initial SARS-CoV-2 infection, with blood sampling performed pre and post infection every 4 weeks in a 3-month-follow-up during the early 2020 COVID-19 pandemic. A concurrently followed control group (n = 27) remained SARS-CoV-2-negative. Serum anellovirus loads were measured using qPCR. A significant decrease in anellovirus load was found in the first weeks after SARS-CoV-2 infection, whereas anellovirus concentrations remained stable in the uninfected control group. A restored anellovirus load was seen approximately 10 weeks after SARS-CoV-2 infection. For five subjects, an in-time anellome analysis via Illumina sequencing could be performed. In three of the five HCWs, the anellome visibly changed during SARS-CoV-2 infection and returned to baseline in two of these cases. In conclusion, anellovirus loads in blood can temporarily decrease upon an acute secondary infection.
Collapse
Affiliation(s)
- Anne L. Timmerman
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Lisanne Commandeur
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Martin Deijs
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Maarten G. J. M. Burggraaff
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - A. H. Ayesha Lavell
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Karlijn van der Straten
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | - Khadija Tejjani
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jacqueline van Rijswijk
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Marit J. van Gils
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| | - Jonne J. Sikkens
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Marije K. Bomers
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Lia van der Hoek
- Laboratory of Experimental Virology, Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands; (A.L.T.); (L.C.); (M.D.); (M.G.J.M.B.); (K.T.); (J.v.R.); (M.J.v.G.)
- Amsterdam Institute for Infection and Immunity, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands (J.J.S.); (M.K.B.)
| |
Collapse
|