1
|
Cabral JE, Qiu Y, Heck AJR, McNulty R. Variable Assembly and Procapsid Binding of Bacteriophage P22 Terminase Subunits in Solution. Pathogens 2024; 13:1066. [PMID: 39770326 PMCID: PMC11728703 DOI: 10.3390/pathogens13121066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Concatemeric viral DNA is packaged into bacteriophage P22 procapsids via a headful packaging mechanism mediated by a molecular machine consisting of small (gp3) and large (gp2) terminase subunits. Although a negative stain reconstruction exists for the terminase holoenzyme, it is not clear how this complex binds the dodecameric portal protein located at a 5-fold mismatch vertex. Herein, we describe new assemblies for the holoenzyme. Both native mass spectrometry and transmission electron microscopy reveal that the P22 terminase complex adopts three main assemblies, which include a nonameric S-terminase bound to two L-terminase 1(gp3)9:2(gp2), two nonameric S-terminase bound to five L-terminase 2(gp3)9:5(gp2), and three nonameric S-terminase bound to seven L-terminase 3(gp3)9:7(gp2). Native agarose gel electrophoresis shows that the terminase complex interacts with procapsids with mild crosslinking. These results herein illustrate the P22 terminase complex can adopt a variety of conformations and assembly states.
Collapse
Affiliation(s)
- Julia Elise Cabral
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA; (J.E.C.)
| | - Yanfei Qiu
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA; (J.E.C.)
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Netherlands Proteomics Center, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Reginald McNulty
- Laboratory of Macromolecular Structure, Department of Molecular Biology and Biochemistry, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA; (J.E.C.)
- Department of Pharmaceutical Sciences, University of California Irvine, Steinhaus Hall, Irvine, CA 92697-3900, USA
| |
Collapse
|
2
|
Weitao T, Grandinetti G, Guo P. Revolving ATPase motors as asymmetrical hexamers in translocating lengthy dsDNA via conformational changes and electrostatic interactions in phi29, T7, herpesvirus, mimivirus, E. coli, and Streptomyces. EXPLORATION (BEIJING, CHINA) 2023; 3:20210056. [PMID: 37324034 PMCID: PMC10191066 DOI: 10.1002/exp.20210056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/28/2022] [Indexed: 06/17/2023]
Abstract
Investigations of the parallel architectures of biomotors in both prokaryotic and eukaryotic systems suggest a similar revolving mechanism in the use of ATP to drive translocation of the lengthy double-stranded (ds)DNA genomes. This mechanism is exemplified by the dsDNA packaging motor of bacteriophage phi29 that operates through revolving but not rotating dsDNA to "Push through a one-way valve". This unique and novel revolving mechanism discovered in phi29 DNA packaging motor was recently reported in other systems including the dsDNA packaging motor of herpesvirus, the dsDNA ejecting motor of bacteriophage T7, the plasmid conjugation machine TraB in Streptomyces, the dsDNA translocase FtsK of gram-negative bacteria, and the genome-packaging motor in mimivirus. These motors exhibit an asymmetrical hexameric structure for transporting the genome via an inch-worm sequential action. This review intends to delineate the revolving mechanism from a perspective of conformational changes and electrostatic interactions. In phi29, the positively charged residues Arg-Lys-Arg in the N-terminus of the connector bind the negatively charged interlocking domain of pRNA. ATP binding to an ATPase subunit induces the closed conformation of the ATPase. The ATPase associates with an adjacent subunit to form a dimer facilitated by the positively charged arginine finger. The ATP-binding induces a positive charging on its DNA binding surface via an allostery mechanism and thus the higher affinity for the negatively charged dsDNA. ATP hydrolysis induces an expanded conformation of the ATPase with a lower affinity for dsDNA due to the change of the surface charge, but the (ADP+Pi)-bound subunit in the dimer undergoes a conformational change that repels dsDNA. The positively charged lysine rings of the connector attract dsDNA stepwise and periodically to keep its revolving motion along the channel wall, thus maintaining the one-way translocation of dsDNA without reversal and sliding out. The finding of the presence of the asymmetrical hexameric architectures of many ATPases that use the revolving mechanism may provide insights into the understanding of translocation of the gigantic genomes including chromosomes in complicated systems without coiling and tangling to speed up dsDNA translocation and save energy.
Collapse
Affiliation(s)
- Tao Weitao
- UT Southwestern Medical CenterCenter for the Genetics of Host DefenseDallasTXUSA
- College of Science and MathematicsSouthwest Baptist UniversityBolivarMOUSA
| | - Giovanna Grandinetti
- Center for Electron Microscopy and AnalysisThe Ohio State UniversityColumbusOHUSA
| | - Peixuan Guo
- Center for RNA Nanobiotechnology and NanomedicineDivision of Pharmaceutics and Pharmacology, College of PharmacyDorothy M. Davis Heart and Lung Research Institute, James Comprehensive Cancer Center, College of MedicineThe Ohio State UniversityColumbusOHUSA
| |
Collapse
|
3
|
Abstract
Although the process of genome encapsidation is highly conserved in tailed bacteriophages and eukaryotic double-stranded DNA viruses, there are two distinct packaging pathways that these viruses use to catalyze ATP-driven translocation of the viral genome into a preassembled procapsid shell. One pathway is used by ϕ29-like phages and adenoviruses, which replicate and subsequently package a monomeric, unit-length genome covalently attached to a virus/phage-encoded protein at each 5'-end of the dsDNA genome. In a second, more ubiquitous packaging pathway characterized by phage lambda and the herpesviruses, the viral DNA is replicated as multigenome concatemers linked in a head-to-tail fashion. Genome packaging in these viruses thus requires excision of individual genomes from the concatemer that are then translocated into a preassembled procapsid. Hence, the ATPases that power packaging in these viruses also possess nuclease activities that cut the genome from the concatemer at the beginning and end of packaging. This review focuses on proposed mechanisms of genome packaging in the dsDNA viruses using unit-length ϕ29 and concatemeric λ genome packaging motors as representative model systems.
Collapse
Affiliation(s)
- Carlos E Catalano
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, United States.
| | - Marc C Morais
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural and Molecular Biophysics, University of Texas Medical Branch at Galveston, Galveston, TX, United States
| |
Collapse
|
4
|
The PLB measurement for the connector in Phi29 bacteriophage reveals the function of its channel loop. Biophys J 2021; 120:1650-1664. [PMID: 33684350 DOI: 10.1016/j.bpj.2021.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 11/23/2022] Open
Abstract
The connector protein, also known as the portal protein, located at the portal vertex in the Phi29 bacteriophage has been found to play a key role in the genome DNA packaging motor. There is a disordered region, composed of 12 sets of 18-residue loops N229-N246, that has been assumed to serve as a "clamp" to retain the DNA within the pressurized capsid when DNA is fully packaged. However, the process remains undefined about how the clamping of DNA occurs and what signal is used to engage the channel loops to clamp the DNA near the end of DNA packaging. In this study, we use the planar lipid bilayer (PLB) membrane technique to study the connector with its loops cleaved. The channel properties are compared with those of the connector with corresponding wild-type loops at different membrane potentials. On the basis of the hypothesis of the Donnan effects in the flashing Brownian ratchet model, we associate the PLB experimental results with the outcomes from the relevant biochemical experiments on the proheads containing the connectors without the loops, which enables us to provide a clear picture about how the DNA clamping occurs. A mathematical relationship between the Donnan potential and the DNA packaging density is established, demonstrating that they are both in essence the same signal that is received and transmitted by the connector to dictate DNA clamping and the termination of DNA packaging. At the end of the study, the PLB technique is proposed as a viral research tool, and its potential use to study the functions of specific domains in a portal protein of the tailed bacteriophages is highlighted.
Collapse
|
5
|
Translation of the long-term fundamental studies on viral DNA packaging motors into nanotechnology and nanomedicine. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1103-1129. [DOI: 10.1007/s11427-020-1752-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
|
6
|
Sharp KA, Lu XJ, Cingolani G, Harvey SC. DNA Conformational Changes Play a Force-Generating Role during Bacteriophage Genome Packaging. Biophys J 2019; 116:2172-2180. [PMID: 31103227 DOI: 10.1016/j.bpj.2019.02.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/11/2019] [Accepted: 02/22/2019] [Indexed: 11/19/2022] Open
Abstract
Motors that move DNA, or that move along DNA, play essential roles in DNA replication, transcription, recombination, and chromosome segregation. The mechanisms by which these DNA translocases operate remain largely unknown. Some double-stranded DNA (dsDNA) viruses use an ATP-dependent motor to drive DNA into preformed capsids. These include several human pathogens as well as dsDNA bacteriophages-viruses that infect bacteria. We previously proposed that DNA is not a passive substrate of bacteriophage packaging motors but is instead an active component of the machinery. We carried out computational studies on dsDNA in the channels of viral portal proteins, and they reveal DNA conformational changes consistent with that hypothesis. dsDNA becomes longer ("stretched") in regions of high negative electrostatic potential and shorter ("scrunched") in regions of high positive potential. These results suggest a mechanism that electrostatically couples the energy released by ATP hydrolysis to DNA translocation: The chemical cycle of ATP binding, hydrolysis, and product release drives a cycle of protein conformational changes. This produces changes in the electrostatic potential in the channel through the portal, and these drive cyclic changes in the length of dsDNA as the phosphate groups respond to the protein's electrostatic potential. The DNA motions are captured by a coordinated protein-DNA grip-and-release cycle to produce DNA translocation. In short, the ATPase, portal, and dsDNA work synergistically to promote genome packaging.
Collapse
Affiliation(s)
- Kim A Sharp
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University, New York, New York
| | - Gino Cingolani
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
7
|
Haque F, Zhang H, Wang S, Chang CL, Savran C, Guo P. Methods for Single-Molecule Sensing and Detection Using Bacteriophage Phi29 DNA Packaging Motor. Methods Mol Biol 2018; 1805:423-450. [PMID: 29971730 DOI: 10.1007/978-1-4939-8556-2_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Bacteriophage phi29 DNA packaging motor consists of a dodecameric portal channel protein complex termed connector that allows transportation of genomic dsDNA and a hexameric packaging RNA (pRNA) ring to gear the motor. The elegant design of the portal protein has facilitated its applications for real-time single-molecule detection of biopolymers and chemicals with high sensitivity and selectivity. The robust self-assembly property of the pRNA has enabled biophysical studies of the motor complex to determine the stoichiometry and structure/folding of the pRNA at single-molecule level. This chapter focuses on biophysical and analytical methods for studying the phi29 motor components at the single-molecule level, such as single channel conductance assays of membrane-embedded connectors; single molecule photobleaching (SMPB) assay for determining the stoichiometry of phi29 motor components; fluorescence resonance energy transfer (FRET) assay for determining the structure and folding of pRNA; atomic force microscopy (AFM) for imaging pRNA nanoparticles of various size, shape, and stoichiometry; and bright-field microscopy with magnetomechanical system for direct visualization of viral DNA packaging process. The phi29 system with explicit engineering capability has incredible potentials for diverse applications in nanotechnology and nanomedicine including, but not limited to, DNA sequencing, drug delivery to diseased cells, environmental surveillance, and early disease diagnosis.
Collapse
Affiliation(s)
- Farzin Haque
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Hui Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Shaoying Wang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA.,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA.,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Chun-Li Chang
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Cagri Savran
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.,School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Peixuan Guo
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH, USA. .,Department of Physiology and Cell Biology, Dorothy M Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH, USA. .,Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA. .,Markey Cancer Center, University of Kentucky, Lexington, KY, USA. .,Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA. .,Sylvan G. Frank Endowed Chair in Pharmaceutics and Drug Delivery, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
8
|
Jing P, Burris B, Zhang R. Forces from the Portal Govern the Late-Stage DNA Transport in a Viral DNA Packaging Nanomotor. Biophys J 2017; 111:162-77. [PMID: 27410744 DOI: 10.1016/j.bpj.2016.05.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/09/2023] Open
Abstract
In the Phi29 bacteriophage, the DNA packaging nanomotor packs its double-stranded DNA genome into the virus capsid. At the late stage of DNA packaging, the negatively charged genome is increasingly compacted at a higher density in the capsid with a higher internal pressure. During the process, two Donnan effects, osmotic pressure and Donnan equilibrium potentials, are significantly amplified, which, in turn, affect the channel activity of the portal protein, GP10, embedded in the semipermeable capsid shell. In the research, planar lipid bilayer experiments were used to study the channel activities of the viral protein. The Donnan effect on the conformational changes of the viral protein was discovered, indicating GP10 may not be a static channel at the late stage of DNA packaging. Due to the conformational changes, GP10 may generate electrostatic forces that govern the DNA transport. For the section of the genome DNA that remains outside of the connector channel, a strong repulsive force from the viral protein would be generated against the DNA entry; however, for the section of the genome DNA within the channel, the portal protein would become a Brownian motor, which adopts the flash Brownian ratchet mechanism to pump the DNA against the increasingly built-up internal pressure (up to 20 atm) in the capsid. Therefore, the DNA transport in the nanoscale viral channel at the late stage of DNA packaging could be a consequence of Brownian movement of the genomic DNA, which would be rectified and harnessed by the forces from the interior wall of the viral channel under the influence of the Donnan effect.
Collapse
Affiliation(s)
- Peng Jing
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana.
| | - Benjamin Burris
- Department of Chemistry, College of Arts and Sciences, Indiana University-Purdue University Fort Wayne, Fort Wayne, Indiana
| | - Rong Zhang
- Division of Endocrinology, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Waters JT, Kim HD, Gumbart JC, Lu XJ, Harvey SC. DNA Scrunching in the Packaging of Viral Genomes. J Phys Chem B 2016; 120:6200-7. [PMID: 27214211 DOI: 10.1021/acs.jpcb.6b02149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The motors that drive double-stranded DNA (dsDNA) genomes into viral capsids are among the strongest of all biological motors for which forces have been measured, but it is not known how they generate force. We previously proposed that the DNA is not a passive substrate but that it plays an active role in force generation. This "scrunchworm hypothesis" holds that the motor proteins repeatedly dehydrate and rehydrate the DNA, which then undergoes cyclic shortening and lengthening motions. These are captured by a coupled protein-DNA grip-and-release cycle to rectify the motion and translocate the DNA into the capsid. In this study, we examined the interactions of dsDNA with the dodecameric connector protein of bacteriophage ϕ29, using molecular dynamics simulations on four different DNA sequences, starting from two different conformations (A-DNA and B-DNA). In all four simulations starting with the protein equilibrated with A-DNA in the channel, we observed transitions to a common, metastable, highly scrunched conformation, designated A*. This conformation is very similar to one recently reported by Kumar and Grubmüller in much longer MD simulations on B-DNA docked into the ϕ29 connector. These results are significant for four reasons. First, the scrunched conformations occur spontaneously, without requiring lever-like protein motions often believed to be necessary for DNA translocation. Second, the transition takes place within the connector, providing the location of the putative "dehydrator". Third, the protein has more contacts with one strand of the DNA than with the other; the former was identified in single-molecule laser tweezer experiments as the "load-bearing strand". Finally, the spontaneity of the DNA-protein interaction suggests that it may play a role in the initial docking of DNA in motors like that of T4 that can load and package any sequence.
Collapse
Affiliation(s)
- James T Waters
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Harold D Kim
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Xiang-Jun Lu
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | - Stephen C Harvey
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Biological Nanomotors with a Revolution, Linear, or Rotation Motion Mechanism. Microbiol Mol Biol Rev 2016; 80:161-86. [PMID: 26819321 DOI: 10.1128/mmbr.00056-15] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ubiquitous biological nanomotors were classified into two categories in the past: linear and rotation motors. In 2013, a third type of biomotor, revolution without rotation (http://rnanano.osu.edu/movie.html), was discovered and found to be widespread among bacteria, eukaryotic viruses, and double-stranded DNA (dsDNA) bacteriophages. This review focuses on recent findings about various aspects of motors, including chirality, stoichiometry, channel size, entropy, conformational change, and energy usage rate, in a variety of well-studied motors, including FoF1 ATPase, helicases, viral dsDNA-packaging motors, bacterial chromosome translocases, myosin, kinesin, and dynein. In particular, dsDNA translocases are used to illustrate how these features relate to the motion mechanism and how nature elegantly evolved a revolution mechanism to avoid coiling and tangling during lengthy dsDNA genome transportation in cell division. Motor chirality and channel size are two factors that distinguish rotation motors from revolution motors. Rotation motors use right-handed channels to drive the right-handed dsDNA, similar to the way a nut drives the bolt with threads in same orientation; revolution motors use left-handed motor channels to revolve the right-handed dsDNA. Rotation motors use small channels (<2 nm in diameter) for the close contact of the channel wall with single-stranded DNA (ssDNA) or the 2-nm dsDNA bolt; revolution motors use larger channels (>3 nm) with room for the bolt to revolve. Binding and hydrolysis of ATP are linked to different conformational entropy changes in the motor that lead to altered affinity for the substrate and allow work to be done, for example, helicase unwinding of DNA or translocase directional movement of DNA.
Collapse
|
11
|
Common mechanisms of DNA translocation motors in bacteria and viruses using one-way revolution mechanism without rotation. Biotechnol Adv 2015; 32:853-72. [PMID: 24913057 DOI: 10.1016/j.biotechadv.2014.01.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/24/2014] [Accepted: 01/25/2014] [Indexed: 12/15/2022]
Abstract
Biomotors were once described into two categories: linear motor and rotation motor. Recently, a third type of biomotor with revolution mechanism without rotation has been discovered. By analogy, rotation resembles the Earth rotating on its axis in a complete cycle every 24h, while revolution resembles the Earth revolving around the Sun one circle per 365 days (see animations http://nanobio.uky.edu/movie.html). The action of revolution that enables a motor free of coiling and torque has solved many puzzles and debates that have occurred throughout the history of viral DNA packaging motor studies. It also settles the discrepancies concerning the structure, stoichiometry, and functioning of DNA translocation motors. This review uses bacteriophages Phi29, HK97, SPP1, P22, T4, and T7 as well as bacterial DNA translocase FtsK and SpoIIIE or the large eukaryotic dsDNA viruses such as mimivirus and vaccinia virus as examples to elucidate the puzzles. These motors use ATPase, some of which have been confirmed to be a hexamer, to revolve around the dsDNA sequentially. ATP binding induces conformational change and possibly an entropy alteration in ATPase to a high affinity toward dsDNA; but ATP hydrolysis triggers another entropic and conformational change in ATPase to a low affinity for DNA, by which dsDNA is pushed toward an adjacent ATPase subunit. The rotation and revolution mechanisms can be distinguished by the size of channel: the channels of rotation motors are equal to or smaller than 2 nm, that is the size of dsDNA, whereas channels of revolution motors are larger than 3 nm. Rotation motors use parallel threads to operate with a right-handed channel, while revolution motors use a left-handed channel to drive the right-handed DNA in an anti-chiral arrangement. Coordination of several vector factors in the same direction makes viral DNA-packaging motors unusually powerful and effective. Revolution mechanism that avoids DNA coiling in translocating the lengthy genomic dsDNA helix could be advantageous for cell replication such as bacterial binary fission and cell mitosis without the need for topoisomerase or helicase to consume additional energy.
Collapse
|
12
|
Harvey SC. The scrunchworm hypothesis: transitions between A-DNA and B-DNA provide the driving force for genome packaging in double-stranded DNA bacteriophages. J Struct Biol 2014; 189:1-8. [PMID: 25486612 DOI: 10.1016/j.jsb.2014.11.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/14/2014] [Accepted: 11/30/2014] [Indexed: 11/17/2022]
Abstract
Double-stranded DNA bacteriophages have motors that drive the genome into preformed capsids, using the energy released by hydrolysis of ATP to overcome the forces opposing DNA packaging. Viral packaging motors are the strongest of all biological motors, but it is not known how they generate these forces. Several models for the process of mechanochemical force generation have been put forward, but there is no consensus on which, if any, of these is correct. All the existing models assume that protein-generated forces drive the DNA forward. The scrunchworm hypothesis proposes that the DNA molecule is the active force-generating core of the motor, not simply a substrate on which the motor operates. The protein components of the motor dehydrate a section of the DNA, converting it from the B form to the A form and shortening it by about 23%. The proteins then rehydrate the DNA, which converts back to the B form. Other regions of the motor grip and release the DNA to capture the shortening-lengthening motions of the B→A→B cycle ("scrunching"), so that DNA is pulled into the motor and pushed forward into the capsid. This DNA-centric mechanism provides a quantitative physical explanation for the magnitude of the forces generated by viral packaging motors. It also provides a simple explanation for the fact that each of the steps in the burst cycle advances the DNA by 2.5 base pairs. The scrunchworm hypothesis is consistent with a large body of published data, and it makes four experimentally testable predictions.
Collapse
Affiliation(s)
- Stephen C Harvey
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332-0230, USA.
| |
Collapse
|
13
|
Abstract
The DNA packaging motors of double-stranded DNA phages are models for analysis of all multi-molecular motors and for analysis of several fundamental aspects of biology, including early evolution, relationship of in vivo to in vitro biochemistry and targets for anti-virals. Work on phage DNA packaging motors both has produced and is producing dualities in the interpretation of data obtained by use of both traditional techniques and the more recently developed procedures of single-molecule analysis. The dualities include (1) reductive vs. accretive evolution, (2) rotation vs. stasis of sub-assemblies of the motor, (3) thermal ratcheting vs. power stroking in generating force, (4) complete motor vs. spark plug role for the packaging ATPase, (5) use of previously isolated vs. new intermediates for analysis of the intermediate states of the motor and (6) a motor with one cycle vs. a motor with two cycles. We provide background for these dualities, some of which are under-emphasized in the literature. We suggest directions for future research.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| | | |
Collapse
|
14
|
De-Donatis GM, Zhao Z, Wang S, Huang LP, Schwartz C, Tsodikov OV, Zhang H, Haque F, Guo P. Finding of widespread viral and bacterial revolution dsDNA translocation motors distinct from rotation motors by channel chirality and size. Cell Biosci 2014; 4:30. [PMID: 24940480 PMCID: PMC4060578 DOI: 10.1186/2045-3701-4-30] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 05/16/2014] [Indexed: 12/03/2022] Open
Abstract
Background Double-stranded DNA translocation is ubiquitous in living systems. Cell mitosis, bacterial binary fission, DNA replication or repair, homologous recombination, Holliday junction resolution, viral genome packaging and cell entry all involve biomotor-driven dsDNA translocation. Previously, biomotors have been primarily classified into linear and rotational motors. We recently discovered a third class of dsDNA translocation motors in Phi29 utilizing revolution mechanism without rotation. Analogically, the Earth rotates around its own axis every 24 hours, but revolves around the Sun every 365 days. Results Single-channel DNA translocation conductance assay combined with structure inspections of motor channels on bacteriophages P22, SPP1, HK97, T7, T4, Phi29, and other dsDNA translocation motors such as bacterial FtsK and eukaryotic mimiviruses or vaccinia viruses showed that revolution motor is widespread. The force generation mechanism for revolution motors is elucidated. Revolution motors can be differentiated from rotation motors by their channel size and chirality. Crystal structure inspection revealed that revolution motors commonly exhibit channel diameters larger than 3 nm, while rotation motors that rotate around one of the two separated DNA strands feature a diameter smaller than 2 nm. Phi29 revolution motor translocated double- and tetra-stranded DNA that occupied 32% and 64% of the narrowest channel cross-section, respectively, evidencing that revolution motors exhibit channel diameters significantly wider than the dsDNA. Left-handed oriented channels found in revolution motors drive the right-handed dsDNA via anti-chiral interaction, while right-handed channels observed in rotation motors drive the right-handed dsDNA via parallel threads. Tethering both the motor and the dsDNA distal-end of the revolution motor does not block DNA packaging, indicating that no rotation is required for motors of dsDNA phages, while a small-angle left-handed twist of dsDNA that is aligned with the channel could occur due to the conformational change of the phage motor channels from a left-handed configuration for DNA entry to a right-handed configuration for DNA ejection for host cell infection. Conclusions The revolution motor is widespread among biological systems, and can be distinguished from rotation motors by channel size and chirality. The revolution mechanism renders dsDNA void of coiling and torque during translocation of the lengthy helical chromosome, thus resulting in more efficient motor energy conversion.
Collapse
Affiliation(s)
- Gian Marco De-Donatis
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Zhengyi Zhao
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Shaoying Wang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Lisa P Huang
- Current address: Institute for Biomarker Research, Medical Diagnostic Laboratories, L.L.C., Hamilton, NJ 08690, USA
| | - Chad Schwartz
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Oleg V Tsodikov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA
| | - Hui Zhang
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Farzin Haque
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | - Peixuan Guo
- Nanobiotechnology Center, University of Kentucky, Lexington, KY, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY, USA.,William Farish Endowed Chair in Nanobiotechnology, School of Pharmacy, University of Kentucky, 565 Biopharmaceutical Complex, 789 S. Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
15
|
Serwer P. The XXIIIrd Phage/Virus Assembly Meeting. BACTERIOPHAGE 2014; 4:e27272. [PMID: 24498537 DOI: 10.4161/bact.27272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 11/19/2013] [Accepted: 11/19/2013] [Indexed: 11/19/2022]
Abstract
The XXIIIrd Phage/Virus Assembly (PVA) meeting returned to its birthplace in Lake Arrowhead, CA on September 8-13, 2013 (Fig. 1). The original meeting occurred in 1968, organized by Bob Edgar (Caltech, Pasadena, CA USA), Fred Eiserling (University of California, Los Angeles, Los Angeles, CA USA) and Bill Wood (Caltech, Pasadena, CA USA). The organizers of the 2013 meeting were Bill Gelbart (University of California, Los Angeles, Los Angeles, CA USA) and Jack Johnson (Scripps Research Institute, La Jolla, CA USA). This meeting specializes in an egalitarian format. Students are distinguished from senior faculty primarily by the signs of age. With the exception of historically based introductory talks, all talks were allotted the same time and freedom. This tradition began when the meeting was phage-only and has been continued now that all viruses are included. Many were the animated conversations about basic questions. New and international participants were present, a sign that the field has significant attraction, as it should, based on details below. The meeting was also characterized by a sense of humor and generally good times, a chance to both enjoy the science and forget the funding malaise to which many participants are exposed. I will present some of the meeting content, without attempting to be comprehensive.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry; The University of Texas Health Science Center; San Antonio, TX USA
| |
Collapse
|
16
|
Guo P, Schwartz C, Haak J, Zhao Z. Discovery of a new motion mechanism of biomotors similar to the earth revolving around the sun without rotation. Virology 2013; 446:133-43. [PMID: 24074575 PMCID: PMC3941703 DOI: 10.1016/j.virol.2013.07.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/27/2013] [Accepted: 07/21/2013] [Indexed: 12/14/2022]
Abstract
Biomotors have been classified into linear and rotational motors. For 35 years, it has been popularly believed that viral dsDNA-packaging apparatuses are pentameric rotation motors. Recently, a third class of hexameric motor has been found in bacteriophage phi29 that utilizes a mechanism of revolution without rotation, friction, coiling, or torque. This review addresses how packaging motors control dsDNA one-way traffic; how four electropositive layers in the channel interact with the electronegative phosphate backbone to generate four steps in translocating one dsDNA helix; how motors resolve the mismatch between 10.5 bases and 12 connector subunits per cycle of revolution; and how ATP regulates sequential action of motor ATPase. Since motors with all number of subunits can utilize the revolution mechanism, this finding helps resolve puzzles and debates concerning the oligomeric nature of packaging motors in many phage systems. This revolution mechanism helps to solve the undesirable dsDNA supercoiling issue involved in rotation.
Collapse
Affiliation(s)
- Peixuan Guo
- Nanobiotechnology Center, and Markey Cancer Center, Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA.
| | | | | | | |
Collapse
|
17
|
Revolution rather than rotation of AAA+ hexameric phi29 nanomotor for viral dsDNA packaging without coiling. Virology 2013; 443:28-39. [PMID: 23763768 PMCID: PMC3850062 DOI: 10.1016/j.virol.2013.04.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/16/2013] [Accepted: 04/20/2013] [Indexed: 01/28/2023]
Abstract
It has long been believed that the DNA-packaging motor of dsDNA viruses
utilizes a rotation mechanism. Here we report a revolution rather than rotation
mechanism for the bacteriophage phi29 DNA packaging motor. The phi29 motor
contains six copies of the ATPase (Schwartz et al., this issue); ATP binding to
one ATPase subunit stimulates the ATPase to adopt a conformation with a high
affinity for dsDNA. ATP hydrolysis induces a new conformation with a lower
affinity, thus transferring the dsDNA to an adjacent subunit by a power stroke.
DNA revolves unidirectionally along the hexameric channel wall of the ATPase,
but neither the dsDNA nor the ATPase itself rotates along its own axis. One ATP
is hydrolyzed in each transitional step, and six ATPs are consumed for one
helical turn of 360°. Transition of the same dsDNA chain along the
channel wall, but at a location 60° different from the last contact,
urges dsDNA to move forward 1.75 base pairs each step (10.5 bp per
turn/6ATP=1.75 bp per ATP). Each connector subunit tilts with a
left-handed orientation at a 30° angle in relation to its vertical axis
that runs anti-parallel to the right-handed dsDNA helix, facilitating the
one-way traffic of dsDNA. The connector channel has been shown to cause four
steps of transition due to four positively charged lysine rings that make direct
contact with the negatively charged DNA phosphate backbone. Translocation of
dsDNA into the procapsid by revolution avoids the difficulties during rotation
that are associated with DNA supercoiling. Since the revolution mechanism can
apply to any stoichiometry, this motor mechanism might reconcile the
stoichiometry discrepancy in many phage systems where the ATPase has been found
as a tetramer, hexamer, or nonamer.
Collapse
|
18
|
Zhao Z, Khisamutdinov E, Schwartz C, Guo P. Mechanism of one-way traffic of hexameric phi29 DNA packaging motor with four electropositive relaying layers facilitating antiparallel revolution. ACS NANO 2013; 7:4082-92. [PMID: 23510192 PMCID: PMC3667633 DOI: 10.1021/nn4002775] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/20/2013] [Indexed: 05/21/2023]
Abstract
The importance of nanomotors in nanotechnology is akin to that of mechanical engines to daily life. The AAA+ superfamily is a class of nanomotors performing various functions. Their hexagonal arrangement facilitates bottom-up assembly for stable structures. The bacteriophage phi29 DNA translocation motor contains three coaxial rings: a dodecamer channel, a hexameric ATPase ring, and a hexameric pRNA ring. The viral DNA packaging motor has been believed to be a rotational machine. However, we discovered a revolution mechanism without rotation. By analogy, the earth revolves around the sun while rotating on its own axis. One-way traffic of dsDNA translocation is facilitated by five factors: (1) ATPase changes its conformation to revolve dsDNA within a hexameric channel in one direction; (2) the 30° tilt of the channel subunits causes an antiparallel arrangement between two helices of dsDNA and channel wall to advance one-way translocation; (3) unidirectional flow property of the internal channel loops serves as a ratchet valve to prevent reversal; (4) 5'-3' single-direction movement of one DNA strand along the channel wall ensures single direction; and (5) four electropositive layers interact with one strand of the electronegative dsDNA phosphate backbone, resulting in four relaying transitional pauses during translocation. The discovery of a riding system along one strand provides a motion nanosystem for cargo transportation and a tool for studying force generation without coiling, friction, and torque. The revolution of dsDNA among 12 subunits offers a series of recognition sites on the DNA backbone to provide additional spatial variables for nucleotide discrimination for sensing applications.
Collapse
|
19
|
Visualization of uncorrelated, tandem symmetry mismatches in the internal genome packaging apparatus of bacteriophage T7. Proc Natl Acad Sci U S A 2013; 110:6811-6. [PMID: 23580619 DOI: 10.1073/pnas.1215563110] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Motor-driven packaging of a dsDNA genome into a preformed protein capsid through a unique portal vertex is essential in the life cycle of a large number of dsDNA viruses. We have used single-particle electron cryomicroscopy to study the multilayer structure of the portal vertex of the bacteriophage T7 procapsid, the recipient of T7 DNA in packaging. A focused asymmetric reconstruction method was developed and applied to selectively resolve neighboring pairs of symmetry-mismatched layers of the portal vertex. However, structural features in all layers of the multilayer portal vertex could not be resolved simultaneously. Our results imply that layers with mismatched symmetries can join together in several different relative orientations, and that orientations at different interfaces assort independently to produce structural isomers, a process that we call combinatorial assembly isomerism. This isomerism explains rotational smearing in previously reported asymmetric reconstructions of the portal vertex of T7 and other bacteriophages. Combinatorial assembly isomerism may represent a new regime of structural biology in which globally varying structures assemble from a common set of components. Our reconstructions collectively validate previously proposed symmetries, compositions, and sequential order of T7 portal vertex layers, resolving in tandem the 5-fold gene product 10 (gp10) shell, 12-fold gp8 portal ring, and an internal core stack consisting of 12-fold gp14 adaptor ring, 8-fold bowl-shaped gp15, and 4-fold gp16 tip. We also found a small tilt of the core stack relative to the icosahedral fivefold axis and propose that this tilt assists DNA spooling without tangling during packaging.
Collapse
|
20
|
Zhang H, Schwartz C, De Donatis GM, Guo P. "Push through one-way valve" mechanism of viral DNA packaging. Adv Virus Res 2012; 83:415-65. [PMID: 22748815 DOI: 10.1016/b978-0-12-394438-2.00009-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Double-stranded (ds)DNA viruses package their genomic DNA into a procapsid using a force-generating nanomotor powered by ATP hydrolysis. Viral DNA packaging motors are mainly composed of the connector channel and two DNA packaging enzymes. In 1998, it was proposed that viral DNA packaging motors exercise a mechanism similar to the action of AAA+ ATPases that assemble into ring-shaped oligomers, often hexamers, with a central channel (Guo et al. Molecular Cell, 2:149). This chapter focuses on the most recent findings in the bacteriophage ϕ29 DNA packaging nanomotor to address this intriguing notion. Almost all dsDNA viruses are composed entirely of protein, but in the unique case of ϕ29, packaging RNA (pRNA) plays an intermediate role in the packaging process. Evidence revealed that DNA packaging is accomplished via a "push through one-way valve" mechanism. The ATPase gp16 pushes dsDNA through the connector channel section by section into the procapsid. The dodecameric connector channel functions as a one-way valve that only allows dsDNA to enter but not exit the procapsid during DNA packaging. Although the roles of the ATPase gp16 and the motor connector channel are separate and independent, pRNA bridges these two components to ensure the coordination of an integrated motor. ATP induces a conformational change in gp16, leading to its stronger binding to dsDNA. Furthermore, ATP hydrolysis led to the departure of dsDNA from the ATPase/dsDNA complex, an action used to push dsDNA through the connector channel. It was found unexpectedly that by mutating the basic lysine rings of the connector channel or by changing the pH did not measurably impair DNA translocation or affect the one-way traffic property of the channel, suggesting that the positive charges in the lysine ring are not essential in gearing the dsDNA. The motor channel exercises three discrete, reversible, and controllable steps of gating, with each step altering the channel size by 31% to control the direction of translocation of dsDNA. Many DNA packaging models have been contingent upon the number of base pairs packaged per ATP relative to helical turns for B-type DNA. Both 2 and 2.5 bp per ATP have been used to argue for four, five, or six discrete steps of DNA translocation. The "push through one-way valve" mechanism renews the perception of dsDNA packaging energy calculations and provides insight into the discrepancy between 2 and 2.5 bp per ATP. Application of the DNA packaging motor in nanotechnology and nanomedicine is also addressed. Comparison with nine other DNA packaging models revealed that the "push through one-way valve" is the most agreeable mechanism to interpret most of the findings that led to historical models. The application of viral DNA packaging motors is also discussed.
Collapse
Affiliation(s)
- Hui Zhang
- Nanobiotechnology Center, Department of Pharmaceutical Sciences, and Markey Cancer Center, University of Kentucky, Lexington, KY, USA
| | | | | | | |
Collapse
|
21
|
Serwer P, Wright ET. Agarose gel electrophoresis reveals structural fluidity of a phage T3 DNA packaging intermediate. Electrophoresis 2012; 33:352-65. [PMID: 22222979 DOI: 10.1002/elps.201100326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We find a new aspect of DNA packaging-associated structural fluidity for phage T3 capsids. The procedure is (i) glutaraldehyde cross-linking of in vivo DNA packaging intermediates for the stabilization of structure and then (ii) determining effective radius by two-dimensional agarose gel electrophoresis (2D-AGE). The intermediates are capsids with incompletely packaged DNA (ipDNA) and without an external DNA segment; these intermediates are called ipDNA-capsids. We initially increase the production of ipDNA-capsids by raising NaCl concentration during in vivo DNA packaging. By 2D-AGE, we find a new state of contracted shell for some particles of one previously identified ipDNA-capsid. The contracted shell-state is found when the ipDNA length/mature DNA length (F) is above 0.17, but not at lower F. Some contracted-shell ipDNA-capsids have the phage tail; others do not. The contracted-shell ipDNA-capsids are explained by premature DNA maturation cleavage that makes accessible a contracted-shell intermediate of a cycle of the T3 DNA packaging motor. The analysis of ipDNA-capsids, rather than intermediates with uncleaved DNA, provides a simplifying strategy for a complete biochemical analysis of in vivo DNA packaging.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
| | | |
Collapse
|
22
|
Geng J, Fang H, Haque F, Zhang L, Guo P. Three reversible and controllable discrete steps of channel gating of a viral DNA packaging motor. Biomaterials 2011; 32:8234-42. [PMID: 21807410 DOI: 10.1016/j.biomaterials.2011.07.034] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/11/2011] [Indexed: 01/06/2023]
Abstract
The channel of the viral DNA packaging motor allows dsDNA to enter the protein procapsid shell during maturation and to exit during infection. We recently showed that the bacteriophage phi29 DNA packaging motor exercises a one-way traffic property using a channel as a valve for dsDNA translocation. This raises a question of how dsDNA is ejected during infection if the channel only allows the dsDNA to travel inward. We proposed that DNA forward or reverse travel is controlled by conformational changes of the channel. Here we reported our direct observation that the channel indeed exercises conformational changes by single channel recording at a single-molecule level. The changes were induced by high electrical voltage, or by affinity binding to the C-terminal wider end located within the capsid. Novel enough, the conformational change of the purified connector channel exhibited three discrete gating steps, with a size reduction of 32% for each step. We investigated the role of the terminal and internal loop of the channel in gating by different mutants. The step-wise conformational change of the channel was also reversible and controllable, making it an ideal nano-valve for constructing a nanomachine with potential applications in nanobiotechnology and nanomedicine.
Collapse
Affiliation(s)
- Jia Geng
- Nanobiomedical Center, SEEBME, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | |
Collapse
|
23
|
Serwer P. Proposed ancestors of phage nucleic acid packaging motors (and cells). Viruses 2011; 3:1249-80. [PMID: 21994778 PMCID: PMC3185796 DOI: 10.3390/v3071249] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 01/08/2023] Open
Abstract
I present a hypothesis that begins with the proposal that abiotic ancestors of phage RNA and DNA packaging systems (and cells) include mobile shells with an internal, molecule-transporting cavity. The foundations of this hypothesis include the conjecture that current nucleic acid packaging systems have imprints from abiotic ancestors. The abiotic shells (1) initially imbibe and later also bind and transport organic molecules, thereby providing a means for producing molecular interactions that are links in the chain of events that produces ancestors to the first molecules that are both information carrying and enzymatically active, and (2) are subsequently scaffolds on which proteins assemble to form ancestors common to both shells of viral capsids and cell membranes. Emergence of cells occurs via aggregation and merger of shells and internal contents. The hypothesis continues by using proposed imprints of abiotic and biotic ancestors to deduce an ancestral thermal ratchet-based DNA packaging motor that subsequently evolves to integrate a DNA packaging ATPase that provides a power stroke.
Collapse
Affiliation(s)
- Philip Serwer
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229, USA.
| |
Collapse
|