1
|
Wienen F, Nilson R, Allmendinger E, Peters S, Barth TF, Kochanek S, Krutzke L. An oncolytic HAdV-5 with reduced surface charge combines diminished toxicity and improved tumor targeting. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200909. [PMID: 39758252 PMCID: PMC11699628 DOI: 10.1016/j.omton.2024.200909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/12/2024] [Accepted: 11/21/2024] [Indexed: 01/07/2025]
Abstract
Human adenovirus type 5 (HAdV-5)-based oncolytic viruses hold significant promise for anti-cancer therapy. However, poor tumor-targeting and off-target organ transduction after systemic administration limit their therapeutic efficacy. In addition, the strong liver tropism of HAdV-5-based vectors poses the risk of hepatotoxicity. By genetic modification of the major capsid protein hexon we generated a HAdV-5-based oncolytic vector (HAdV-5-HexPos3) with reduced negative surface charge. Coxsackie and adenovirus receptor (CAR) binding-ablated (ΔCAR) HAdV-5-HexPos3_ΔCAR exhibited superior and CAR-independent transduction of various cancer cell lines in vitro, further enhanced in the presence of HAdV-5 naive murine plasma. Upon intravenous administration into tumor-bearing immunodeficient NSG mice, replication-deficient HAdV-5-HexPos3_ΔCAR vector particles showed significantly reduced off-target organ tropism in all tissues analyzed, including the liver. Moreover, we detected a significantly increased intratumoral vector load for HAdV-5-HexPos3_ΔCAR, leading to a 29-fold elevated tumor-to-liver ratio compared with a control vector with unmodified hexon. Intravenous injection of a conditionally replicating hexon-unmodified control vector induced severe hepatotoxicity in tumor-bearing NSG mice, while a conditionally replicating HAdV-5-HexPos3_ΔCAR vector was well tolerated and resulted in intratumoral vector presence for up to 56 days. HAdV-5-HexPos3_ΔCAR represents a promising vector platform for the generation of HAdV-5-based oncolytic viruses with reduced systemic toxicity and improved therapeutic efficacy.
Collapse
Affiliation(s)
- Frederik Wienen
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Robin Nilson
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | | | - Sarah Peters
- Department of Clinical Chemistry, Ulm University Medical Center, 89081 Ulm, Germany
| | - Thomas F.E. Barth
- Institute of Pathology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Stefan Kochanek
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
2
|
Sakhi H, Arabi M, Ghaemi A, Movafagh A, Sheikhpour M. Oncolytic viruses in lung cancer treatment: a review article. Immunotherapy 2024; 16:75-97. [PMID: 38112057 DOI: 10.2217/imt-2023-0124] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 11/21/2023] [Indexed: 12/20/2023] Open
Abstract
Lung cancer has a high morbidity rate worldwide due to its resistance to therapy. So new treatment options are needed to improve the outcomes of lung cancer treatment. This study aimed to evaluate the effectiveness of oncolytic viruses (OVs) as a new type of cancer treatment. In this study, 158 articles from PubMed and Scopus from 1994 to 2022 were reviewed on the effectiveness of OVs in the treatment of lung cancer. The oncolytic properties of eight categories of OVs and their interactions with treatment options were investigated. OVs can be applied as a promising immunotherapy option, as they are reproduced selectively in different types of cancer cells, cause tumor cell lysis and trigger efficient immune responses.
Collapse
Affiliation(s)
- Hanie Sakhi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mohadeseh Arabi
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Amir Ghaemi
- Department of Virology, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Abolfazl Movafagh
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Mojgan Sheikhpour
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| |
Collapse
|
3
|
Wienen F, Nilson R, Allmendinger E, Graumann D, Fiedler E, Bosse-Doenecke E, Kochanek S, Krutzke L. Affilin-based retargeting of adenoviral vectors to the epidermal growth factor receptor. BIOMATERIALS ADVANCES 2023; 144:213208. [PMID: 36442453 DOI: 10.1016/j.bioadv.2022.213208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022]
Abstract
INTRODUCTION Treatment of head and neck squamous cell carcinomas (HNSCC) by oncolytic adenoviral vectors holds promise as an efficient anti-cancer therapy. The epidermal growth factor receptor (EGFR) represents an attractive target receptor since it is frequently overexpressed in many types of HNSCC. METHODS To achieve EGFR-specific targeting by human adenovirus type 5 (HAdV-5) based vectors, the EGFR affinity ligand Affilin was covalently attached in a position specific manner either to the fiber or the hexon protein of the vector capsid. In vitro and in vivo studies investigated EGFR-specific cancer cell transduction, susceptibility to natural sequestration mechanisms, pharmacokinetics and biodistribution profiles of Affilin-decorated vectors. RESULTS Affilin-decorated vectors showed strongly enhanced and EGFR-specific cancer cell transduction in vitro and less susceptibility to known sequestration mechanisms of HAdV-5 particles. However, in vivo neither systemic nor intratumoral vector administration resulted in an improved transduction of EGFR-positive tumors. Comprehensive analyses indicated hampered EGFR-targeting by Affilin-decorated vectors was caused by rapid vector particle consumption due to binding to the murine EGFR, insufficient tumor vascularization and poor target accessibility for Affilin in the solid tumor caused by a pronounced tumor stroma. CONCLUSION In vitro studies yielded proof-of-concept results demonstrating that covalent attachment of a receptor-specific Affilin to the adenoviral capsid provides an effective and versatile tool to address cancer-specific target receptors by adenoviral vectors. Regarding EGFR as the vector target, off-target tissue transduction and low receptor accessibility within the tumor tissue prevented efficient tumor transduction by Affilin-decorated vectors, rendering EGFR a difficult-to-target receptor for adenoviral vectors.
Collapse
Affiliation(s)
- Frederik Wienen
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Robin Nilson
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Ellen Allmendinger
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - David Graumann
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Erik Fiedler
- Navigo Proteins GmbH, Heinrich-Damerow-Str. 1, 06120 Halle, Germany
| | | | - Stefan Kochanek
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany
| | - Lea Krutzke
- Department of Gene Therapy, University of Ulm, Helmholtzstraße 8/1, 89081 Ulm, Germany.
| |
Collapse
|
4
|
Jafari M, Kadkhodazadeh M, Shapourabadi MB, Goradel NH, Shokrgozar MA, Arashkia A, Abdoli S, Sharifzadeh Z. Immunovirotherapy: The role of antibody based therapeutics combination with oncolytic viruses. Front Immunol 2022; 13:1012806. [PMID: 36311790 PMCID: PMC9608759 DOI: 10.3389/fimmu.2022.1012806] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the fact that the new drugs and targeted therapies have been approved for cancer therapy during the past 30 years, the majority of cancer types are still remain challenging to be treated. Due to the tumor heterogeneity, immune system evasion and the complex interaction between the tumor microenvironment and immune cells, the great majority of malignancies need multimodal therapy. Unfortunately, tumors frequently develop treatment resistance, so it is important to have a variety of therapeutic choices available for the treatment of neoplastic diseases. Immunotherapy has lately shown clinical responses in malignancies with unfavorable outcomes. Oncolytic virus (OV) immunotherapy is a cancer treatment strategy that employs naturally occurring or genetically-modified viruses that multiply preferentially within cancer cells. OVs have the ability to not only induce oncolysis but also activate cells of the immune system, which in turn activates innate and adaptive anticancer responses. Despite the fact that OVs were translated into clinical trials, with T-VECs receiving FDA approval for melanoma, their use in fighting cancer faced some challenges, including off-target side effects, immune system clearance, non-specific uptake, and intratumoral spread of OVs in solid tumors. Although various strategies have been used to overcome the challenges, these strategies have not provided promising outcomes in monotherapy with OVs. In this situation, it is increasingly common to use rational combinations of immunotherapies to improve patient benefit. With the development of other aspects of cancer immunotherapy strategies, combinational therapy has been proposed to improve the anti-tumor activities of OVs. In this regard, OVs were combined with other biotherapeutic platforms, including various forms of antibodies, nanobodies, chimeric antigen receptor (CAR) T cells, and dendritic cells, to reduce the side effects of OVs and enhance their efficacy. This article reviews the promising outcomes of OVs in cancer therapy, the challenges OVs face and solutions, and their combination with other biotherapeutic agents.
Collapse
Affiliation(s)
- Mahdie Jafari
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Arash Arashkia
- Department of Molecular Virology, Pasture Institute of Iran, Tehran, Iran
| | - Shahriyar Abdoli
- School of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
- *Correspondence: Zahra Sharifzadeh, ; Shahriyar Abdoli,
| | - Zahra Sharifzadeh
- Department of Immunology, Pasteur Institute of Iran, Tehran, Iran
- *Correspondence: Zahra Sharifzadeh, ; Shahriyar Abdoli,
| |
Collapse
|
5
|
Yan Y, Jing S, Feng L, Zhang J, Zeng Z, Li M, Zhao S, Ou J, Lan W, Guan W, Wu X, Wu J, Seto D, Zhang Q. Construction and Characterization of a Novel Recombinant Attenuated and Replication-Deficient Candidate Human Adenovirus Type 3 Vaccine: "Adenovirus Vaccine Within an Adenovirus Vector". Virol Sin 2021; 36:354-364. [PMID: 32458297 PMCID: PMC7248191 DOI: 10.1007/s12250-020-00234-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 04/13/2020] [Indexed: 01/09/2023] Open
Abstract
Human adenoviruses (HAdVs) are highly contagious and result in large number of acute respiratory disease (ARD) cases with severe morbidity and mortality. Human adenovirus type 3 (HAdV-3) is the most common type that causes ARD outbreaks in Asia, Europe, and the Americas. However, there is currently no vaccine approved for its general use. The hexon protein contains the main neutralizing epitopes, provoking strong and lasting immunogenicity. In this study, a novel recombinant and attenuated adenovirus vaccine candidate against HAdV-3 was constructed based on a commercially-available replication-defective HAdV-5 gene therapy and vaccine vector. The entire HAdV-3 hexon gene was integrated into the E1 region of the vector by homologous recombination using a bacterial system. The resultant recombinants expressing the HAdV-3 hexon protein were rescued in AD293 cells, identified and characterized by RT-PCR, Western blots, indirect immunofluorescence, and electron microscopy. This potential vaccine candidate had a similar replicative efficacy as the wild-type HAdV-3 strain. However, and importantly, the vaccine strain had been rendered replication-defective and was incapable of replication in A549 cells after more than twenty-generation passages in AD293 cells. This represents a significant safety feature. The mice immunized both intranasally and intramuscularly by this vaccine candidate raised significant neutralizing antibodies against HAdV-3. Therefore, this recombinant, attenuated, and safe adenovirus vaccine is a promising HAdV-3 vaccine candidate. The strategy of using a clinically approved and replication-defective HAdV-5 vector provides a novel approach to develop universal adenovirus vaccine candidates against all the other types of adenoviruses causing ARDs and perhaps other adenovirus-associated diseases.
Collapse
Affiliation(s)
- Yuqian Yan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shuping Jing
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
- Microbiological Laboratory, Zhuhai Center for Disease Control and Prevention, Zhuhai, 519000, China
| | - Liqiang Feng
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jing Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Zhiwei Zeng
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Min Li
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Shan Zhao
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Junxian Ou
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wendong Lan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Wenyi Guan
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xiaowei Wu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Jianguo Wu
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China
| | - Donald Seto
- Bioinformatics and Computational Biology Program, School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Qiwei Zhang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515, China.
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
6
|
Chai D, Qiu D, Zhang Z, Yuchen Shi S, Wang G, Fang L, Li H, Li H, Tian H, Zheng J. Absent in melanoma 2 enhances anti-tumour effects of CAIX promotor controlled conditionally replicative adenovirus in renal cancer. J Cell Mol Med 2020; 24:10744-10755. [PMID: 32725966 PMCID: PMC7521288 DOI: 10.1111/jcmm.15697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Conditionally replicative adenoviruses (CRAds) were promising approach for solid tumour treatment, but its oncolytic efficiency and toxicity are still not satisfactory for further clinical application. Here, we developed the CAIX promotor (CAIXpromotor)‐controlled CRAd armed with a tumour suppressor absent in melanoma 2 (AIM2) to enhance its oncolytic potency. The CAIXpromotor‐AIM2 adenoviruses (Ad‐CAIXpromotor‐AIM2) could efficiently express E1A and AIM2 in renal cancer cells. Compared with Ad‐CAIXpromotor, Ad‐CAIXpromotor‐AIM2 significantly inhibited cell proliferation and enhanced cell apoptosis and cell killing, thus resulting in the oncolytic efficiency in 786‐O cells or OSRC‐2 cells. To explore the therapeutic effect, various Ads were intratumourally injected into OSRC‐2‐xenograft mice. The tumour growth was remarkably inhibited in Ad‐CAIXpromotor‐AIM2‐treated group as demonstrated by reduced tumour volume and weight with a low toxicity. The inflammasome inhibitor YVAD‐CMK resulted in the reduction of anti‐tumour activity by Ad‐CAIXpromotor‐AIM2 in vitro or in vivo, suggesting that inflammasome activation response was required for the enhanced therapeutic efficiency. Furthermore, lung metastasis of renal cancer mice was also suppressed by Ad‐CAIXpromotor‐AIM2 treatment accompanied by the decreased tumour fossil in lung tissues. These results indicated that the tumour‐specific Ad‐CAIXpromotor‐AIM2 could be applied for human renal cancer therapy. The therapeutic strategy of AIM2‐based CRAds could be a potential and promising approach for the therapy of primary solid or metastasis tumours.
Collapse
Affiliation(s)
- Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Dong Qiu
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Zichun Zhang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Shang Yuchen Shi
- Department of Radiation Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Huizhong Li
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Hui Tian
- Cancer Institute, Xuzhou Medical University, Xuzhou, China.,Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
7
|
Uehara N, Otsuki N, Kubo M, Kitamoto J, Kojima Y, Teshima M, Shinomiya H, Shirakawa T, Nibu KI. Oncolytic effect of Midkine promoter-based conditionally replicating adenoviruses expressing EGFR siRNA in head and neck squamous cancer cell line T891. Cancer Rep (Hoboken) 2020; 3:e1231. [PMID: 32671980 PMCID: PMC7941548 DOI: 10.1002/cnr2.1231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022] Open
Abstract
Background Epidermal growth factor receptor (EGFR) is overexpressed in head and neck squamous cell carcinomas (HNSCCs). Midkine expression is restricted in adult tissues but is increased in several malignant tumors, including HNSCCs. Aim Here, we evaluated the antitumor effect of Midkine promoter–based conditionally replicative adenovirus expressing siRNA against EGFR for targeting HNSCCs expressing Midkine. Methods and results A conditionally replicative adenovirus vector controlled by the Midkine promoter, Ad‐MK‐siEGFR, was generated by integrating gene‐expressing siRNA against EGFR. Antitumor effect of Ad‐MK‐siEGFR was tested in vitro using established HNSCC cell line, T891 with strong Midkine expression. Expression of EGFR in T891 infected with Ad‐MK‐siEGFR was significantly lower than that of T891 infected with control. Cytotoxicity assays showed significant growth suppression of Ad‐MK‐siEGFR in T891 cells. Conclusions This study demonstrated the possibility of oncolytic therapy using the Midkine promoter–based conditional replication‐selective adenovirus containing siRNA against EGFR in HNSCC cell line T891. Further validation of the findings in more cell lines and in vivo should be performed to clarify the potential clinical application.
Collapse
Affiliation(s)
- Natsumi Uehara
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Naoki Otsuki
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mie Kubo
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Junko Kitamoto
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasutaka Kojima
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masanori Teshima
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hirotaka Shinomiya
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiro Shirakawa
- Division of Infectious Disease Control, Center for Infectious Disease, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Ken-Ichi Nibu
- Department of Otolaryngology-Head and Neck Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
8
|
Hemminki O, Dos Santos JM, Hemminki A. Oncolytic viruses for cancer immunotherapy. J Hematol Oncol 2020; 13:84. [PMID: 32600470 PMCID: PMC7325106 DOI: 10.1186/s13045-020-00922-1] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/17/2020] [Indexed: 12/24/2022] Open
Abstract
In this review, we discuss the use of oncolytic viruses in cancer immunotherapy treatments in general, with a particular focus on adenoviruses. These serve as a model to elucidate how versatile viruses are, and how they can be used to complement other cancer therapies to gain optimal patient benefits. Historical reports from over a hundred years suggest treatment efficacy and safety with adenovirus and other oncolytic viruses. This is confirmed in more contemporary patient series and multiple clinical trials. Yet, while the first viruses have already been granted approval from several regulatory authorities, room for improvement remains. As good safety and tolerability have been seen, the oncolytic virus field has now moved on to increase efficacy in a wide array of approaches. Adding different immunomodulatory transgenes to the viruses is one strategy gaining momentum. Immunostimulatory molecules can thus be produced at the tumor with reduced systemic side effects. On the other hand, preclinical work suggests additive or synergistic effects with conventional treatments such as radiotherapy and chemotherapy. In addition, the newly introduced checkpoint inhibitors and other immunomodulatory drugs could make perfect companions to oncolytic viruses. Especially tumors that seem not to be recognized by the immune system can be made immunogenic by oncolytic viruses. Logically, the combination with checkpoint inhibitors is being evaluated in ongoing trials. Another promising avenue is modulating the tumor microenvironment with oncolytic viruses to allow T cell therapies to work in solid tumors. Oncolytic viruses could be the next remarkable wave in cancer immunotherapy.
Collapse
Affiliation(s)
- Otto Hemminki
- Division of Urologic Oncology, Department of Surgical Oncology, Princess Margaret Cancer Centre, University Health Network and University of Toronto, Toronto, Ontario, Canada. .,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,Department of Urology, Helsinki University Hospital, Helsinki, Finland.
| | - João Manuel Dos Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland. .,TILT Biotherapeutics Ltd, Helsinki, Finland. .,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland.
| |
Collapse
|
9
|
Miao J, Chard LS, Wang Z, Wang Y. Syrian Hamster as an Animal Model for the Study on Infectious Diseases. Front Immunol 2019; 10:2329. [PMID: 31632404 PMCID: PMC6781508 DOI: 10.3389/fimmu.2019.02329] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022] Open
Abstract
Infectious diseases still remain one of the biggest challenges for human health. In order to gain a better understanding of the pathogenesis of infectious diseases and develop effective diagnostic tools, therapeutic agents, and preventive vaccines, a suitable animal model which can represent the characteristics of infectious is required. The Syrian hamster immune responses to infectious pathogens are similar to humans and as such, this model is advantageous for studying pathogenesis of infection including post-bacterial, viral and parasitic pathogens, along with assessing the efficacy and interactions of medications and vaccines for those pathogens. This review summarizes the current status of Syrian hamster models and their use for understanding the underlying mechanisms of pathogen infection, in addition to their use as a drug discovery platform and provides a strong rationale for the selection of Syrian hamster as animal models in biomedical research. The challenges of using Syrian hamster as an alternative animal model for the research of infectious diseases are also addressed.
Collapse
Affiliation(s)
- Jinxin Miao
- Department of Science and Technology, Henan University of Chinese Medicine, Zhengzhou, China
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Louisa S. Chard
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Zhimin Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yaohe Wang
- Sino-British Research Center for Molecular Oncology, National Center for the International Research in Cell and Gene Therapy, School of Basic Sciences, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Overcoming the limitations of locally administered oncolytic virotherapy. BMC Biomed Eng 2019; 1:17. [PMID: 32903299 PMCID: PMC7422506 DOI: 10.1186/s42490-019-0016-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
Adenovirus (Ad) has been most extensively evaluated gene transfer vector in clinical trials due to facile production in high viral titer, highly efficient transduction, and proven safety record. Similarly, an oncolytic Ad, which replicates selectively in cancer cells through genetic modifications, is actively being evaluated in various phases of clinical trials as a promising next generation therapeutic against cancer. Most of these trials with oncolytic Ads to date have employed intratumoral injection as the standard administration route. Although these locally administered oncolytic Ads have shown promising outcomes, the therapeutic efficacy is not yet optimal due to poor intratumoral virion retention, nonspecific shedding of virion to normal organs, variable infection efficacy due to heterogeneity of tumor cells, adverse antiviral immune response, and short biological activity of oncolytic viruses in situ. These inherent problems associated with locally administered Ad also holds true for other oncolytic viral vectors. Thus, this review will aim to discuss various nanomaterial-based delivery strategies to improve the intratumoral administration efficacy of oncolytic Ad as well as other types of oncolytic viruses.
Collapse
|
11
|
Stepanenko AA, Chekhonin VP. A compendium of adenovirus genetic modifications for enhanced replication, oncolysis, and tumor immunosurveillance in cancer therapy. Gene 2018; 679:11-18. [PMID: 30171937 DOI: 10.1016/j.gene.2018.08.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/19/2018] [Accepted: 08/27/2018] [Indexed: 12/23/2022]
Abstract
In this review, we specifically focus on genetic modifications of oncolytic adenovirus 5 (Ad5)-based vectors that enhance replication, oncolysis/spread, and virus-mediated tumor immunosurveillance. The finding of negative regulation of minor core protein V by SUMOylation led to the identification of amino acid residues, which when mutated increase adenovirus replication and progeny yield. Suppression of Dicer and/or RNAi pathway with shRNA or p19 tomato bushy stunt protein also results in significant enhancement of adenovirus replication and progeny yield. Truncation mutations in E3-19K or i-leader sequence or overexpression of adenovirus death protein (ADP) potently increase adenovirus progeny release and spread without affecting virus yield. Moreover, E3-19K protein, which was found to inhibit both major histocompatibility complex I (MHCI) and MHC-I chain-related A and B proteins (MICA/MICB) expression on the cell surface, protecting infected cells from T-lymphocyte and natural killer (NK) cell attack, may be tailored to selectively target only MHCI or MICA/MICB, or to lose the ability to downregulate both. At last, E3-19K protein may be exploited to deliver tumor-associated epitopes directly to the endoplasmic reticulum for loading MHCI in the transporter associated with antigen processing (TAP)-deregulated cells.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia
| |
Collapse
|
12
|
Stepanenko AA, Chekhonin VP. Tropism and transduction of oncolytic adenovirus 5 vectors in cancer therapy: Focus on fiber chimerism and mosaicism, hexon and pIX. Virus Res 2018; 257:40-51. [PMID: 30125593 DOI: 10.1016/j.virusres.2018.08.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/16/2018] [Indexed: 02/09/2023]
Abstract
The cellular internalization (infection of cells) of adenovirus 5 (Ad5) is mediated by the initial attachment of the globular knob domain of the capsid fiber protein to the cell surface coxsackievirus and adenovirus receptor (CAR), then followed by the interaction of the virus penton base proteins with cellular integrins. In tumors, there is a substantial intra- and intertumoral variability in CAR expression. The CAR-negative cells generally exhibit very low infectability. Since the fiber knob is a primary mediator of Ad5 binding to the cell surface, improved infectivity of Ad5-based vectors as oncolytic agents may be achieved via genetic modifications of this domain. The strategies to modify or broaden tropism and increase transduction efficiency of Ad5-based vectors include: 1) an incorporation of a targeting peptide into the fiber knob domain (the HI loop and/or C-terminus); 2) fiber knob serotype switching, or pseudotyping, by constructing chimeric fibers consisting of the knob domain derived from an alternate serotype (e.g., Ad5/3 or Ad5/35 chimeras), which binds to receptor(s) other than CAR (e.g., desmoglein 2/DSG2 and/or CD46); 3) "fiber complex mosaicism", an approach of combining serotype chimerism with peptide ligand(s) incorporation (e.g., Ad5/3-RGD); 4) "dual fiber mosaicism" by expressing two separate fibers with distinct receptor-binding capabilities on the same viral particle (e.g., Ad5-5/3 or Ad5-5/σ1); 5) fiber xenotyping by replacing the knob and shaft domains of wild-type Ad5 fiber protein with fibritin trimerization domain of T4 bacteriophage or σ1 attachment protein of reovirus. Other genetic approaches to increase the CAR-independent transduction efficiency include insertion of a targeting peptide into the hypervariable region of the capsid protein hexon or fusion to the C-terminus of pIX. Finally, we consider a yet unsolved molecular mechanism of liver targeting by Ad5-based vectors (CAR-, integrin-, fiber shaft KKTK motif-, and hepatic heparan sulfate glycosaminoglycans-independent, but fiber-, hexon- and blood factor X-dependent).
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V.P. Serbsky Federal Medical Research Center of Psychiatry and Narcology, The Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia; Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N.I. Pirogov Russian National Research Medical University, The Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
13
|
Ki67 targeted strategies for cancer therapy. Clin Transl Oncol 2017; 20:570-575. [DOI: 10.1007/s12094-017-1774-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 12/11/2022]
|
14
|
Fu YR, Turnell AS, Davis S, Heesom KJ, Evans VC, Matthews DA. Comparison of protein expression during wild-type, and E1B-55k-deletion, adenovirus infection using quantitative time-course proteomics. J Gen Virol 2017. [PMID: 28631589 PMCID: PMC5656791 DOI: 10.1099/jgv.0.000781] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Adenovirus has evolved strategies to usurp host-cell factors and machinery to facilitate its life cycle, including cell entry, replication, assembly and egress. Adenovirus continues, therefore, to be an important model system for investigating fundamental cellular processes. The role of adenovirus E1B-55k in targeting host-cell proteins that possess antiviral activity for proteasomal degradation is now well established. To expand our understanding of E1B-55k in regulating the levels of host-cell proteins, we performed comparative proteome analysis of wild-type, and E1B-55k-deletion, adenovirus-infected cancer cells. As such we performed quantitative MS/MS analysis to monitor protein expression changes affected by viral E1B-55k. We identified 5937 proteins, and of these, 69 and 58 proteins were down-regulated during wild-type and E1B-55k (dl1520) adenovirus infection, respectively. This analysis revealed that there are many, previously unidentified, cellular proteins subjected to degradation by adenovirus utilizing pathways independent of E1B-55k expression. Moreover, we found that ALCAM, EPHA2 and PTPRF, three cellular proteins that function in the regulation of cell-cell contacts, appeared to be degraded by E1B-55k/E4orf3 and/or E1B-55k/E4orf6 complexes. These molecules, like integrin α3 (a known substrate of E1B-55k/E4orf6), are critical regulators of cell signalling, cell adhesion and cell surface modulation, and their degradation during infection is, potentially, pertinent to adenovirus propagation. The data presented in this study illustrate the broad nature of protein down-regulation mediated by adenovirus.
Collapse
Affiliation(s)
- Yen Rong Fu
- School of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Andrew S Turnell
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Simon Davis
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Kate J Heesom
- Proteomics Facility, Faculty of Biomedical Sciences, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - Vanessa C Evans
- School of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol BS8 1TD, UK
| | - David A Matthews
- School of Cellular and Molecular Medicine, University Walk, University of Bristol, Bristol BS8 1TD, UK
| |
Collapse
|
15
|
Ma J, Li N, Zhao J, Lu J, Ma Y, Zhu Q, Dong Z, Liu K, Ming L. Histone deacetylase inhibitor trichostatin A enhances the antitumor effect of the oncolytic adenovirus H101 on esophageal squamous cell carcinoma in vitro and in vivo. Oncol Lett 2017; 13:4868-4874. [PMID: 28599488 DOI: 10.3892/ol.2017.6069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/10/2017] [Indexed: 12/26/2022] Open
Abstract
Replication-selective oncolytic virotherapy provides a novel modality to treat cancer by inducing cell death in tumor cells but not in normal cells. However, the utilization of oncolytic viruses as a stand-alone treatment is problematic due to their poor transduction efficiency in vivo. H101 was the first oncolytic adenovirus (Ads) to be approved by the Chinese FDA, and exhibits modest antitumor effects when applied as a single agent. The multiple histone deacetylase inhibitor trichostatin A (TSA) has been demonstrated to potently enhance the spread and replication of oncolytic Ads in several infection-resistant types of cancer. The present study aimed to investigate the antitumor effects of H101 in combination with TSA on esophageal squamous cell carcinoma (ESCC) in vitro and in vivo, and determine the mechanisms underlying these effects. H101 and TSA in combination increased the survival of mice harboring human ESCC cell line-tumor xenografts, as compared with mice treated with these agents individually. Therefore, TSA may enhance the antitumor effects of H101 in ESCC.
Collapse
Affiliation(s)
- Junfen Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Nan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Jimin Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Jing Lu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yanqiu Ma
- Department of Obstetrics and Gynecology, Huaihe Hospital of Henan University, Kaifeng, Henan 475001, P.R. China
| | - Qinghua Zhu
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Ziming Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Liang Ming
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
16
|
Jung BK, Lee YK, Hong J, Ghandehari H, Yun CO. Mild Hyperthermia Induced by Gold Nanorod-Mediated Plasmonic Photothermal Therapy Enhances Transduction and Replication of Oncolytic Adenoviral Gene Delivery. ACS NANO 2016; 10:10533-10543. [PMID: 27805805 DOI: 10.1021/acsnano.6b06530] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Oncolytic adenovirus (Ad) is a promising candidate for cancer gene therapy. However, as a monotherapy, it has shown insufficient therapeutic efficacy in clinical trials. In this work, we demonstrate that gold nanorod (GNR)-mediated mild hyperthermia enhances the cellular uptake and consequent gene expression of oncolytic Ad to head and neck tumor cells. We examined the combination of oncolytic Ad expressing vascular endothelial growth factor promoter-targeted artificial transcriptional repressor zinc-finger protein and GNR-mediated mild hyperthermia to improve antitumor effects. The in vitro mechanisms of increased transduction in the presence and absence of hyperthermia were explored followed by evaluation of efficacy of this combination strategy in an animal model. Exposure to optimized hyperthermia conditions improved endocytosis of oncolytic Ad, transgene expression, viral replication, and subsequent cytolysis of head and neck cancer cells. GNR-mediated plasmonic photothermal therapy resulted in precise control of tumor temperature and induction of mild hyperthermia. A combination of oncolytic Ad and GNRs resulted in potent tumor growth inhibition of head and neck tumors.
Collapse
Affiliation(s)
- Bo-Kyeong Jung
- Department of Bioengineering, College of Engineering, Hanyang University , 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - Yeon Kyung Lee
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
| | - JinWoo Hong
- Department of Bioengineering, College of Engineering, Hanyang University , 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology 39-1 Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Korea
- Departments of Pharmaceutics and Pharmaceutical Chemistry and of Bioengineering, Center for Nanomedicine, Nano Institute of Utah, University of Utah , Salt Lake City, Utah 84112, United States
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University , 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791, Korea
| |
Collapse
|
17
|
Kim JW, Auffinger B, Spencer DA, Miska J, Chang AL, Kane JR, Young JS, Kanojia D, Qiao J, Mann JF, Zhang L, Wu M, Ahmed AU, Aboody KS, Strong TV, Hébert CD, Lesniak MS. Single dose GLP toxicity and biodistribution study of a conditionally replicative adenovirus vector, CRAd-S-pk7, administered by intracerebral injection to Syrian hamsters. J Transl Med 2016; 14:134. [PMID: 27184224 PMCID: PMC4868110 DOI: 10.1186/s12967-016-0895-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/05/2016] [Indexed: 11/11/2022] Open
Abstract
Background CRAd-S-pk7 is a conditionally replicative oncolytic adenoviral vector that contains a survivin promoter and a pk7 fiber modification that confer tumor-specific transcriptional targeting and preferential replication in glioma while sparing the surrounding normal brain parenchyma. Methods This IND-enabling study performed under GLP conditions evaluated the toxicity and biodistribution of CRAd-S-pk7 administered as a single intracerebral dose to Syrian hamsters, a permissive model of adenoviral replication. Two hundred and forty animals were stereotactically administered either vehicle (n = 60) or CRAd-S-pk7 at 2.5 × 107, 2.5 × 108, or 2.5 × 109 viral particles (vp)/animal (each n = 60) on day 1. The animals were closely monitored for toxicology evaluation, assessment of viral distribution, and immunogenicity of CRAd-S-pk7. Results Changes in hematology, clinical chemistry, and coagulation parameters were minor and transient, and consistent with the inflammatory changes observed microscopically. These changes were considered to be of little toxicological significance. The vector remained localized primarily in the brain and to some degree in the tissues at the incision site. Low levels of vector DNA were detected in other tissues in a few animals suggesting systemic circulation of the virus. Viral DNA was detected in brains of hamsters for up to 62 days. However, microscopic changes and virus-related toxicity to the central nervous system were considered minor and decreased in incidence and severity over time. Such changes are not uncommon in studies using adenoviral vectors. Conclusion This study provides safety and toxicology data justifying a clinical trial of CRAd-S-pk7 loaded in FDA-approved HB1.F3.CD neural stem cell carriers administered at the tumor resection bed in humans with recurrent malignant glioma. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0895-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Julius Woongki Kim
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Brenda Auffinger
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Drew A Spencer
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jason Miska
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Alan L Chang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Joshua Robert Kane
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jacob S Young
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Deepak Kanojia
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jian Qiao
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Jill F Mann
- Southern Research Institute, Birmingham, AL, USA
| | - Lingjiao Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Meijing Wu
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA
| | | | | | | | - Maciej S Lesniak
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, 676 N. St Clair St, Suite 2210, Chicago, IL, 60611, USA.
| |
Collapse
|
18
|
Li Y, Li YF, Si CZ, Zhu YH, Jin Y, Zhu TT, Liu MY, Liu GY. CCL21/IL21-armed oncolytic adenovirus enhances antitumor activity against TERT-positive tumor cells. Virus Res 2016; 220:172-8. [PMID: 27157859 DOI: 10.1016/j.virusres.2016.05.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/31/2023]
Abstract
Multigene-armed oncolytic adenoviruses are capable of efficiently generating a productive antitumor immune response. The chemokine (C-C motif) ligand 21 (CCL21) binds to CCR7 on naïve T cells and dendritic cells (DCs) to promote their chemoattraction to the tumor and resultant antitumor activity. Interleukin 21 (IL21) promotes survival of naïve T cells while maintaining their CCR7 surface expression, which increases their capacity to transmigrate in response to CCL21 chemoattraction. IL21 is also involved in NK cell differentiation and B cell activation and proliferation. The generation of effective antitumor immune responses is a complex process dependent upon coordinated interactions of various subsets of effector cells. Using the AdEasy system, we aimed to construct an oncolytic adenovirus co-expressing CCL21 and IL21 that could selectively replicate in TERTp-positive tumor cells (Ad-CCL21-IL21 virus). The E1A promoter of these oncolytic adenoviruses was replaced by telomerase reverse transcriptase promoter (TERTp). Ad-CCL21-IL21 was constructed from three plasmids, pGTE-IL21, pShuttle-CMV-CCL21 and AdEasy-1 and was homologously recombined and propagated in the Escherichia coli strain BJ5183 and the packaging cell line HEK-293, respectively. Our results showed that our targeted and armed oncolytic adenoviruses Ad-CCL21-IL21 can induce apoptosis in TERTp-positive tumor cells to give rise to viral propagation, in a dose-dependent manner. Importantly, we confirm that these modified oncolytic adenoviruses do not replicate efficiently in normal cells even under high viral loads. Additionally, we investigate the role of Ad-CCL21-IL21 in inducing antitumor activity and tumor specific cytotoxicity of CTLs in vitro. This study suggests that Ad-CCL21-IL21 is a promising targeted tumor-specific oncolytic adenovirus.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Yi-Fei Li
- The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, PR China
| | - Chong-Zhan Si
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Yu-Hui Zhu
- Second Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Yan Jin
- Second Hospital of Jilin University, Changchun, Jilin Province 130021, PR China
| | - Tong-Tong Zhu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China
| | - Ming-Yuan Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China; Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - Guang-Yao Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, China-Japan Union Hospital, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
19
|
Appaiahgari MB, Vrati S. Adenoviruses as gene/vaccine delivery vectors: promises and pitfalls. Expert Opin Biol Ther 2014; 15:337-51. [DOI: 10.1517/14712598.2015.993374] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Chemical induction of unfolded protein response enhances cancer cell killing through lytic virus infection. J Virol 2014; 88:13086-98. [PMID: 25187554 DOI: 10.1128/jvi.02156-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Cancer cells are susceptible to oncolytic viruses, albeit variably. Human adenoviruses (HAdVs) are widely used oncolytic agents that have been engineered to produce progeny within the tumor and elicit bystander effects. We searched for host factors enhancing bystander effects and conducted a targeted RNA interference screen against guanine nucleotide exchange factors (GEFs) of small GTPases. We show that the unfolded protein response (UPR), which is readily inducible in aggressive tumor cells, enhances melanoma or epithelial cancer cell killing upon HAdV infection. UPR was triggered by knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or the GBF-1 inhibitor golgicide A (GCA) and stimulated HAdV infection. GBF-1 is a GEF for ADP ribosylation factors (Arfs) regulating endoplasmic reticulum (ER)-to-Golgi apparatus and intra-Golgi apparatus membrane transport. Cells treated with GCA enhanced HAdV-induced cytopathic effects in epithelial and melanoma cancer cells but not normal cells, if the drug was applied several hours prior to HAdV inoculation. This was shown by real-time label-free impedance measurements using the xCELLigence system. GCA-treated cells contained fewer incoming HAdVs than control cells, but GCA treatment boosted HAdV titers and spreading in cancer cells. GCA enhanced viral gene expression or transgene expression from the cytomegalovirus promoter of B- or C-species HAdVs but did not enhance viral early region 1A (E1A) expression in uninfected cell lines or cells transfected with plasmid reporter DNA. The UPR-enhanced cell killing required the nuclease activity of the UPR sensor inositol-requiring enzyme 1 (IRE-1) and X box binding protein 1 (XBP-1), which alleviate ER stress. The collective results show that chemical UPR induction and viruses boost tumor cell killing by enhancing oncolytic viral efficacy. IMPORTANCE Cancer is difficult to combat. A wide range of oncolytic viruses show promise for killing cancer cells, yet the efficacy of oncolytic killing is low. We searched for host factors enhancing adenovirus cancer cell killing and found that the knockdown of Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF-1) or chemical inhibition of GBF-1 enhanced adenovirus infection by triggering the IRE-1/XBP-1 branch of the unfolded protein response (UPR). IRE-1/XBP-1 promote cell survival and enhanced the levels of the adenoviral immediate early gene product E1A, virus spreading, and killing of cancer cells. Aggressive tumor cells depend on a readily inducible UPR and, hence, present prime targets for a combined strategy involving adenoviruses and small chemicals inducing UPR.
Collapse
|
21
|
Jung SH, Choi JW, Yun CO, Yhee JY, Price R, Kim SH, Kwon IC, Ghandehari H. Sustained local delivery of oncolytic short hairpin RNA adenoviruses for treatment of head and neck cancer. J Gene Med 2014; 16:143-52. [DOI: 10.1002/jgm.2770] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 05/09/2014] [Accepted: 06/18/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Se-Hui Jung
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Joung-Woo Choi
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering; Hanyang University; Seoul Korea
| | - Ji Young Yhee
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Robert Price
- Departments of Phamaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City UT USA
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
| | - Sun Hwa Kim
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Ick Chan Kwon
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
| | - Hamidreza Ghandehari
- Center for Theragnosis, Biomedical Research Institute; Korea Institute of Science and Technology; Seoul Korea
- Departments of Phamaceutics and Pharmaceutical Chemistry; University of Utah; Salt Lake City UT USA
- Department of Bioengineering; University of Utah; Salt Lake City UT USA
- Center for Nanomedicine, Nano Institute of Utah; University of Utah; Salt Lake City UT USA
| |
Collapse
|
22
|
Ghebremedhin B. Human adenovirus: Viral pathogen with increasing importance. Eur J Microbiol Immunol (Bp) 2014; 4:26-33. [PMID: 24678403 DOI: 10.1556/eujmi.4.2014.1.2] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 12/21/2013] [Indexed: 11/19/2022] Open
Abstract
The aim of this review is to describe the biology of human adenovirus (HAdV), the clinical and epidemiological characteristics of adenoviral epidemic keratoconjunctivitis and to present a practical update on its diagnosis, treatment, and prophylaxis. There are two well-defined adenoviral keratoconjunctivitis clinical syndromes: epidemic keratoconjunctivitis (EKC) and pharyngoconjunctival fever (PCF), which are caused by different HAdV serotypes. The exact incidence of adenoviral conjunctivitis is still poorly known. However, cases are more frequent during warmer months. The virus is endemic in the general population, and frequently causes severe disease in immunocompromised patients, especially the pediatric patients. Contagion is possible through direct contact or fomites, and the virus is extremely resistant to different physical and chemical agents. The clinical signs or symptoms of conjunctival infection are similar to any other conjunctivitis, with a higher incidence of pseudomembranes. In the cornea, adenoviral infection may lead to keratitis nummularis. Diagnosis is mainly clinical, but its etiology can be confirmed using cell cultures, antigen detection, polymerase chain reaction or immunochromatography. Multiple treatments have been tried for this disease, but none of them seem to be completely effective. Prevention is the most reliable and recommended strategy to control this contagious infection.
Collapse
|
23
|
Young BA, Spencer JF, Ying B, Toth K, Wold WSM. The effects of radiation on antitumor efficacy of an oncolytic adenovirus vector in the Syrian hamster model. Cancer Gene Ther 2013; 20:531-7. [PMID: 23928730 PMCID: PMC3778061 DOI: 10.1038/cgt.2013.50] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/03/2013] [Indexed: 12/19/2022]
Abstract
We report that radiation enhances the antitumor efficacy of the oncolytic adenovirus vector VRX-007 in Syrian hamster tumors. We used tumor-specific irradiation of subcutaneous tumors and compared treatment options of radiation alone or combined with VRX-007 and cyclophosphamide (CP). Radiation therapy further augmented the VRX-007-mediated inhibition of tumor growth, in both CP-treated and non-CP-treated hamsters, even though radiation did not lead to increased viral replication in tumors when compared to those treated with VRX-007 alone. Moreover, tumor growth inhibition was similar in tumors irradiated either one week before or after injection with VRX-007, which suggests that radiation exerts its antitumor effect independently from vector therapy. Thus, our results demonstrate that these two therapies do not have to be provided simultaneously to enhance their combined effectiveness against subcutaneous hamster tumors.
Collapse
Affiliation(s)
- B A Young
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, MO, USA
| | | | | | | | | |
Collapse
|
24
|
The role of cyclophosphamide in enhancing antitumor efficacy of an adenovirus oncolytic vector in subcutaneous Syrian hamster tumors. Cancer Gene Ther 2013; 20:521-30. [PMID: 23928731 PMCID: PMC3778155 DOI: 10.1038/cgt.2013.49] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 07/03/2013] [Indexed: 12/23/2022]
Abstract
We have previously reported that intratumoral injection of VRX-007—an Ad5-based vector overexpressing ADP (Adenovirus Death Protein)—can suppress the growth of subcutaneous HaK (hamster renal cancer) tumors. VRX-007 replication and tumor growth inhibition are enhanced when the hamsters are immunosuppressed by a high dose of cyclophosphamide (CP), an immunosuppressive and chemotherapeutic agent. Here we report that continuous immunosuppression with CP was not required for increased oncolytic activity of VRX-007 because short-term dosing or continuous dosing with the drug yielded similar antitumor results. Prolonged viral replication was found only in animals on continuous CP treatment. We used 007-Luc, a replication-competent, luciferase-expressing vector similar to VRX-007 to investigate the replication of the vector over time. Tumor growth inhibition was similar in hamsters given CP treatment either one week before or one week after 007-Luc injection, which suggests that CP exerts its antitumor efficacy independently of vector therapy. 007-Luc did not spread far from the inoculation site, even in immunosuppressed, CP-treated animals. Our results indicate that the enhanced effectiveness that is produced by the combination of VRX-007 and CP therapies is due to their two independent mechanisms and that they do not have to be given simultaneously for the improved outcome shown.
Collapse
|
25
|
Lu ZZ, Zou XH, Lastinger K, Williams A, Qu JG, Estes DM. Enhanced growth of recombinant human adenovirus type 41 (HAdV-41) carrying ADP gene. Virus Res 2013; 176:61-8. [PMID: 23769974 DOI: 10.1016/j.virusres.2013.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/09/2013] [Accepted: 05/10/2013] [Indexed: 12/11/2022]
Abstract
Human adenovirus type 41 (HAdV-41) has the potential to be constructed as a gene transfer vector for oral vaccine or gene therapy targeting gastrointestinal tract. Block in release of progeny virus from host cell severely affects the yield during virus amplification. In this study, HAdV-5 adenovirus death protein (ADP) gene was used to replace the open reading frames (ORFs) of the HAdV-41 E3 region to construct a backbone plasmid pAdbone41ADP. Recombinant adenoviral plasmids harboring ADP and GFP genes (pAd41ADP-GFP) were generated. Plaques were formed and HAdV-41-ADP-GFP virus was rescued after transfecting pAd41ADP-GFP into the packaging cell line 293TE32. When amplified on 293TE32 cells, HAdV-41-ADP-GFP virus released to the culture medium was 10-50 times more than control virus HAdV-41-GFP, which did not carry ADP gene. The results demonstrated that incorporation of the ADP gene substantially increased the yield of recombinant HAdV-41 virus through enhancing spread of progeny virus among packaging cells.
Collapse
Affiliation(s)
- Zhuo-Zhuang Lu
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, GA 30602, USA
| | | | | | | | | | | |
Collapse
|
26
|
Koski A, Karli E, Kipar A, Escutenaire S, Kanerva A, Hemminki A. Mutation of the fiber shaft heparan sulphate binding site of a 5/3 chimeric adenovirus reduces liver tropism. PLoS One 2013; 8:e60032. [PMID: 23585829 PMCID: PMC3621953 DOI: 10.1371/journal.pone.0060032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 02/21/2013] [Indexed: 11/18/2022] Open
Abstract
Natural tropism to the liver is a major obstacle in systemic delivery of adenoviruses in cancer gene therapy. Adenovirus binding to soluble coagulation factors and to cellular heparan sulphate proteoglycans via the fiber shaft KKTK domain are suggested to cause liver tropism. Serotype 5 adenovirus constructs with mutated KKTK regions exhibit liver detargeting, but they also transduce tumors less efficiently, possibly due to altered fiber conformation. We constructed Ad5/3lucS*, a 5/3 chimeric adenovirus with a mutated KKTK region. The fiber knob swap was hypothesized to facilitate tumor transduction. This construct was studied with or without additional coagulation factor ablation. Ad5/3lucS* exhibited significantly reduced transduction of human hepatic cells in vitro and mouse livers in vivo. Combination of coagulation factor ablation by warfarinization to Ad5/3lucS* seemed to further enhance liver detargeting. Cancer cell transduction by Ad5/3lucS* was retained in vitro. In vivo, viral particle accumulation in M4A4-LM3 xenograft tumors was comparable to controls, but Ad5/3lucS* transgene expression was nearly abolished. Coagulation factor ablation did not affect tumor transduction. These studies set the stage for further investigations into the effects of the KKTK mutation and coagulation factor ablation in the context of 5/3 serotype chimerism. Of note, the putative disconnect between tumor transduction and transgene expression could prove useful in further understanding of adenovirus biology.
Collapse
Affiliation(s)
- Anniina Koski
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Eerika Karli
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anja Kipar
- Finnish Centre for Laboratory Animal Pathology, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Veterinary Pathology, School of Veterinary Science and Department of Infection Biology, Institute of Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Sophie Escutenaire
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Anna Kanerva
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Molecular Cancer Biology Program and Transplantation Laboratory and Haartman Institute, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
Wold WSM, Toth K. Chapter three--Syrian hamster as an animal model to study oncolytic adenoviruses and to evaluate the efficacy of antiviral compounds. Adv Cancer Res 2013; 115:69-92. [PMID: 23021242 DOI: 10.1016/b978-0-12-398342-8.00003-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Syrian (golden) hamster (Mesocricetus auratus) has served as a useful model for different aspects of biology for at least 50 years, and its use has been expanding recently. In earlier years, among other things, it was a model for cancer development. More recently, it has become a model for many different infectious diseases. It has also become an alternative model for the study of oncolytic adenovirus vectors for cancer gene therapy. Among several other human pathogens, the hamster is permissive for the replication of human species C adenoviruses, which are the parental virus for the majority of adenovirus vectors in use today. These vectors replicate in some of the established hamster tumor cell lines that can be used to generate tumors in vivo, that is, one can study oncolytic (replication competent) adenoviruses in a permissive, immunocompetent model. This has afforded the opportunity to study the effect of the host immune system on the vector-infected tumor and has allowed the use of a more relevant animal model to determine the safety and biodistribution of replication-competent adenoviruses. The hamster has also been used to evaluate antiviral compounds and vaccines against many viruses, including adenoviruses, flaviviruses, alphaviruses, arenaviruses, bunyaviruses, and paramyxoviruses.
Collapse
Affiliation(s)
- William S M Wold
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St Louis, Missouri, USA.
| | | |
Collapse
|
28
|
Ma J, Zhao J, Lu J, Jiang Y, Yang H, Li P, Zhao M, Liu K, Dong Z. Coxsackievirus and adenovirus receptor promotes antitumor activity of oncolytic adenovirus H101 in esophageal cancer. Int J Mol Med 2012; 30:1403-9. [PMID: 22992863 DOI: 10.3892/ijmm.2012.1133] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 09/02/2012] [Indexed: 11/05/2022] Open
Abstract
Esophageal cancer is an intractable disease due to late diagnosis, high incidence of post-surgical locoregional recurrence and frequent distant metastasis. Oncolytic adenovirus (Ad) vectors are a promising method for cancer treatment. The H101 virus is a recombinant Ad which has replication-selective properties and replicates only in tumor cells. The coxsackievirus and adenovirus receptor (CAR) is considered a surrogate marker that monitors the outcome of Ad-mediated gene therapy. Accumulating evidence indicates that CAR expression levels are lower in various types of tumors such as ovarian, lung, breast and bladder when compared to their normal counterparts. In this study, we reported that trichostatin A (TSA) induced the expression of CAR in esophageal squamous cell carcinoma (ESCC) cell lines through the MAPK/ERK1/2 signaling pathway. The expression levels of CAR were positively related with the antitumor activity of H101. Our results suggest that TSA increases the antitumor activity of the oncolytic adenovirus H101 through the MAPK/ERK pathway.
Collapse
Affiliation(s)
- Junfen Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, P.R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu J, Fang L, Cheng Q, Li L, Su C, Zhang B, Pei D, Yang J, Li W, Zheng J. Effects of G250 promoter controlled conditionally replicative adenovirus expressing Ki67-siRNA on renal cancer cell. Cancer Sci 2012; 103:1880-8. [PMID: 22775978 DOI: 10.1111/j.1349-7006.2012.02380.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/20/2012] [Accepted: 06/22/2012] [Indexed: 12/27/2022] Open
Abstract
Replication-competent adenovirus (RCAd) has been used extensively in cancer gene therapy, and tumor-selection is critical for the use of replication-competent adenovirus. Here we investigated the anti-tumor characterization of oncolytic virus, whose E1A gene is under the control of a renal cell carcinoma specific promoter - the G250 promoter. The constructed oncolytic virus G250-Ki67 is armed with transgene of Ki67-siRNA, and G250-ZD55-Ki67 also with E1B-55 KD deleted. The tumor-specific expression of E1A and Ki67 was demonstrated by Western blot and immunohistochemistry staining, and the tumor-specific cytotoxicity was assessed by crystal violet staining and cell viability assays. The G250-Ki67 and G250-ZD55-Ki67 adenoviruses could express E1A protein in 786-O and OSRC cell lines but not in ACHN and HK-2 cell lines. The expression of Ki67 gene in 786-O and OSRC cell lines were suppressed by these adenoviruses. The cytotoxic effects induced by G250-ZD55-Ki67 and G250-Ki67 were more obvious on the 786-O cell lines than on the OSRC cell lines. Each group of adenoviruses could inhibit the proliferation of the 786-O cells and OSRC cells. However, the effects induced by G250-ZD55-Ki67 and G250-Ki67 on 786-O cells were stronger than on OSRC cells. Moreover, G250-ZD55-Ki67 had enhanced antitumor activities in these renal cancer cells compared with G250-Ki67. G250 promoter-derived CRAds carrying Ki67-siRNA could highly amplify and express Ki67-siRNA in renal cancer cells with expression of G250 antigen, inhibit renal cancer cells proliferation and induce apoptosis. These results demonstrated that the G250-specific oncolytic adenovirus expressing Ki67-siRNA is applicable for human renal clear cell cancer therapy.
Collapse
Affiliation(s)
- Junjie Liu
- Laboratory of Urology, Affiliated Hospital of Xuzhou Medical College, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Svyatchenko VA, Tarasova MV, Netesov SV, Chumakov PM. Oncolytic adenoviruses in anticancer therapy: Current status and prospects. Mol Biol 2012. [DOI: 10.1134/s0026893312040103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
31
|
Li S, Tong J, Rahman MM, Shepherd TG, McFadden G. Oncolytic virotherapy for ovarian cancer. Oncolytic Virother 2012; 1:1-21. [PMID: 25977900 DOI: 10.2147/ov.s31626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the past two decades, more than 20 viruses with selective tropism for tumor cells have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So far, nine phase I or II clinical trials have been conducted or initiated using four different types of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview of recent advances in identification of key genetic or immune-response pathways involved in tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specificities and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could be genetically modified or integrated into multimodality regimens to improve clinical outcomes based on recent advances in ovarian cancer biology.
Collapse
Affiliation(s)
- Shoudong Li
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Jessica Tong
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada ; Translational Ovarian Cancer Research Program, London Health Sciences Centre, London, Ontario, Canada
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Trevor G Shepherd
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada ; Translational Ovarian Cancer Research Program, London Health Sciences Centre, London, Ontario, Canada
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
32
|
Seo J, Yun CO, Kwon OJ, Choi EJ, Song JY, Choi I, Cho KH. A proteoliposome containing apolipoprotein A-I mutant (V156K) enhances rapid tumor regression activity of human origin oncolytic adenovirus in tumor-bearing zebrafish and mice. Mol Cells 2012; 34:143-8. [PMID: 22851220 PMCID: PMC3887819 DOI: 10.1007/s10059-012-2291-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/28/2012] [Accepted: 05/31/2012] [Indexed: 10/28/2022] Open
Abstract
We recently reported that the efficiency of adenoviral gene delivery and virus stability are significantly enhanced when a proteoliposome (PL) containing apolipoprotein (apo) A-I is used in an animal model. In the current study, we tested tumor removal activity of oncolytic adenovirus (Ad) using PL-containing wildtype (WT) or V156K. Oncolytic Ad with or without PL was injected into tumors of zebrafish and nude mice as a Hep3B tumor xenograft model. The V156K-PL-Ad-injected zebrafish, group showed the lowest tumor tissue volume and nucleic acids in the tumor area, whereas injection of Ad alone did not result in adequate removal of tumor activity. Reactive oxygen species (ROS) contents increased two-fold in tumor-bearing zebrafish; however, the V156K-PL-Ad injected group showed a 40% decrease in ROS levels compared to that in normal zebrafish. After reducing the tumor volume with the V156K-PL-Ad injection, the swimming pattern of the zebrafish changed to be more active and energetic. The oncolytic effect of PL-Ad containing either V156K or WT was about two-fold more enhanced in mice than that of Ad alone 34 days after the injection. Immunohistochemical analysis revealed that the PL-Ad-injected groups showed enhanced efficiency of viral delivery with elevated Ad-E1A staining and a diminished number of proliferating tumor cells. Thus, the antitumor effect of oncolytic Ad was strongly enhanced by a PL-containing apoA-I and its mutant (V156K) without causing side effects in mice and zebrafish models.
Collapse
Affiliation(s)
- Juyi Seo
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749,
Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Oh-Joon Kwon
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 133-791,
Korea
| | - Eun-Jin Choi
- Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency (QIA), Anyang 430-757,
Korea
| | - Jae-Young Song
- Viral Disease Division, Animal, Plant and Fisheries Quarantine and Inspection Agency (QIA), Anyang 430-757,
Korea
| | - Inho Choi
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749,
Korea
| | - Kyung-Hyun Cho
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749,
Korea
- Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749,
Korea
| |
Collapse
|
33
|
Zeyaullah M, Patro M, Ahmad I, Ibraheem K, Sultan P, Nehal M, Ali A. Oncolytic viruses in the treatment of cancer: a review of current strategies. Pathol Oncol Res 2012; 18:771-81. [PMID: 22714538 DOI: 10.1007/s12253-012-9548-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 05/30/2012] [Indexed: 12/18/2022]
Abstract
Oncolytic viruses are live, replication-competent viruses that replicate selectively in tumor cells leading to the destruction of the tumor cells. Tumor-selective replicating viruses offer appealing advantages over conventional cancer therapy and are promising a new approach for the treatment of human cancer. The development of virotherapeutics is based on several strategies. Virotherapy is not a new concept, but recent technical advances in the genetic modification of oncolytic viruses have improved their tumor specificity, leading to the development of new weapons for the war against cancer. Clinical trials with oncolytic viruses demonstrate the safety and feasibility of an effective virotherapeutic approach. Strategies to overcome potential obstacles and challenges to virotherapy are currently being explored. Systemic administrations of oncolytic viruses will successfully extend novel treatment against a range of tumors. Combination therapy has shown some encouraging antitumor responses by eliciting strong immunity against established cancer.
Collapse
Affiliation(s)
- Md Zeyaullah
- Department of Microbiology, Faculty of Medicine, Omar Al-Mukhtar University, Al-Baida, Libya.
| | | | | | | | | | | | | |
Collapse
|
34
|
Rojas JJ, Thorne SH. Theranostic potential of oncolytic vaccinia virus. Theranostics 2012; 2:363-73. [PMID: 22509200 PMCID: PMC3326721 DOI: 10.7150/thno.3724] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 01/18/2012] [Indexed: 11/17/2022] Open
Abstract
Biological cancer therapies, such as oncolytic, or replication-selective viruses have advantages over traditional therapeutics as they can employ multiple different mechanisms to target and destroy cancers (including direct cell lysis, immune activation and vascular collapse). This has led to their rapid recent clinical development. However this also makes their pre-clinical and clinical study complex, as many parameters may affect their therapeutic potential and so defining reason for treatment failure or approaches that might enhance their therapeutic activity can be complicated. The ability to non-invasively image viral gene expression in vivo both in pre-clinical models and during clinical testing will considerably enhance the speed of oncolytic virus development as well as increasing the level and type of useful data produced from these studies. Further, subsequent to future clinical approval, imaging of reporter gene expression might be used to evaluate the likelihood of response to oncolytic viral therapy prior to changes in tumor burden. Here different reporter genes used in conjunction with oncolytic viral therapy are described, along with the imaging modalities used to measure their expression, while their applications both in pre-clinical and clinical testing are discussed. Possible future applications for reporter gene expression from oncolytic viruses in the phenotyping of tumors and the personalizing of treatment regimens are also discussed.
Collapse
|
35
|
Abstract
Progress in vector design and an increased knowledge of mechanisms underlying tumor-induced immune suppression have led to a new and promising generation of Adenovirus (Ad)-based immunotherapies, which are discussed in this review. As vaccine vehicles Ad vectors (AdVs) have been clinically evaluated and proven safe, but a major limitation of the commonly used Ad5 serotype is neutralization by preexistent or rapidly induced immune responses. Genetic modifications in the Ad capsid can reduce intrinsic immunogenicity and facilitate escape from antibody-mediated neutralization. Further modification of the Ad hexon and fiber allows for liver and scavenger detargeting and selective targeting of, for example, dendritic cells. These next-generation Ad vaccines with enhanced efficacy are now becoming available for testing as tumor vaccines. In addition, AdVs encoding immune-modulating products may be used to convert the tumor microenvironment from immune-suppressive and proinvasive to proinflammatory, thus facilitating cell-mediated effector functions that can keep tumor growth and invasion in check. Oncolytic AdVs, that selectively replicate in tumor cells and induce an immunogenic form of cell death, can also be armed with immune-activating transgenes to amplify primed antitumor immune responses. These novel immunotherapy strategies, employing highly efficacious AdVs in optimized configurations, show great promise and warrant clinical exploration.
Collapse
|