1
|
Santus L, Sopena-Rios M, García-Pérez R, Lin AE, Adams GC, Barnes KG, Siddle KJ, Wohl S, Reverter F, Rinn JL, Bennett RS, Hensley LE, Sabeti PC, Melé M. Single-cell profiling of lncRNA expression during Ebola virus infection in rhesus macaques. Nat Commun 2023; 14:3866. [PMID: 37391481 PMCID: PMC10313701 DOI: 10.1038/s41467-023-39627-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 06/19/2023] [Indexed: 07/02/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are involved in numerous biological processes and are pivotal mediators of the immune response, yet little is known about their properties at the single-cell level. Here, we generate a multi-tissue bulk RNAseq dataset from Ebola virus (EBOV) infected and not-infected rhesus macaques and identified 3979 novel lncRNAs. To profile lncRNA expression dynamics in immune circulating single-cells during EBOV infection, we design a metric, Upsilon, to estimate cell-type specificity. Our analysis reveals that lncRNAs are expressed in fewer cells than protein-coding genes, but they are not expressed at lower levels nor are they more cell-type specific when expressed in the same number of cells. In addition, we observe that lncRNAs exhibit similar changes in expression patterns to those of protein-coding genes during EBOV infection, and are often co-expressed with known immune regulators. A few lncRNAs change expression specifically upon EBOV entry in the cell. This study sheds light on the differential features of lncRNAs and protein-coding genes and paves the way for future single-cell lncRNA studies.
Collapse
Affiliation(s)
- Luisa Santus
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Sopena-Rios
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
| | - Raquel García-Pérez
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain
| | - Aaron E Lin
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA
| | - Gordon C Adams
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Kayla G Barnes
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
- Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Katherine J Siddle
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Shirlee Wohl
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- The Scripps Research Institute, Department of Immunology and Microbiology, La Jolla, CA, USA
| | - Ferran Reverter
- Department of Genetics, Microbiology and Statistics University of Barcelona, Barcelona, Spain
| | - John L Rinn
- Department of Biochemistry, University of Colorado Boulder, Boulder, 80303, USA
| | - Richard S Bennett
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA
| | - Lisa E Hensley
- Integrated Research Facility, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, MD, 21702, USA.
| | - Pardis C Sabeti
- FAS Center for Systems Biology, Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Harvard Program in Virology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Marta Melé
- Life Sciences Department, Barcelona Supercomputing Center, Barcelona, Catalonia, 08034, Spain.
| |
Collapse
|
2
|
Ebolabase: Zaire ebolavirus-human protein interaction database for drug-repurposing. Int J Biol Macromol 2021; 182:1384-1391. [PMID: 34015403 DOI: 10.1016/j.ijbiomac.2021.04.184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 11/22/2022]
Abstract
Ebola Virus (EBOV) is one of the deadliest pathogenic virus which causes hemorrhagic fever. Though many Ebola-human interaction studies and databases are already reported, the unavailability of an adequate model and lack of publically accessible resources requires a comprehensive study to curate the Ebola-Human-Drug interactions. In total, 270 human proteins interacted with EBOV are collected from published experimental evidence. Then the protein-protein interaction networks are generated as EBOV-human and EBOV-Human-Drugs interaction. These results can help the researcher to find the effective repurposed drug for EBOV treatment. Further, the illustration of gene enrichment and pathway analysis would provide knowledge and insight of EBOV-human interaction describes the importance of the study. Investigating the networks may help to identify a suitable human-based drug target for ebola research community. The inclusion of an emerging concept, a human-based drug targeted therapy plays a very significant role in drug repurposing which reduces the time and effort is the highlight of the current research. An integrated database namely, Ebolabase has been developed and linked with other repositories such as Epitopes, Structures, Literature, Genomics and Proteomics. All generated networks are made to be viewed in a customized manner and the required data can be downloaded freely. The Ebolabase is available at http://ebola.bicpu.edu.in.
Collapse
|
3
|
The Cellular Protein CAD is Recruited into Ebola Virus Inclusion Bodies by the Nucleoprotein NP to Facilitate Genome Replication and Transcription. Cells 2020; 9:cells9051126. [PMID: 32370067 PMCID: PMC7290923 DOI: 10.3390/cells9051126] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Ebola virus (EBOV) is a zoonotic pathogen causing severe hemorrhagic fevers in humans and non-human primates with high case fatality rates. In recent years, the number and extent of outbreaks has increased, highlighting the importance of better understanding the molecular aspects of EBOV infection and host cell interactions to control this virus more efficiently. Many viruses, including EBOV, have been shown to recruit host proteins for different viral processes. Based on a genome-wide siRNA screen, we recently identified the cellular host factor carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) as being involved in EBOV RNA synthesis. However, mechanistic details of how this host factor plays a role in the EBOV life cycle remain elusive. In this study, we analyzed the functional and molecular interactions between EBOV and CAD. To this end, we used siRNA knockdowns in combination with various reverse genetics-based life cycle modelling systems and additionally performed co-immunoprecipitation and co-immunofluorescence assays to investigate the influence of CAD on individual aspects of the EBOV life cycle and to characterize the interactions of CAD with viral proteins. Following this approach, we could demonstrate that CAD directly interacts with the EBOV nucleoprotein NP, and that NP is sufficient to recruit CAD into inclusion bodies dependent on the glutaminase (GLN) domain of CAD. Further, siRNA knockdown experiments indicated that CAD is important for both viral genome replication and transcription, while substrate rescue experiments showed that the function of CAD in pyrimidine synthesis is indeed required for those processes. Together, this suggests that NP recruits CAD into inclusion bodies via its GLN domain in order to provide pyrimidines for EBOV genome replication and transcription. These results define a novel mechanism by which EBOV hijacks host cell pathways in order to facilitate genome replication and transcription and provide a further basis for the development of host-directed broad-spectrum antivirals.
Collapse
|
4
|
Pleet ML, DeMarino C, Stonier SW, Dye JM, Jacobson S, Aman MJ, Kashanchi F. Extracellular Vesicles and Ebola Virus: A New Mechanism of Immune Evasion. Viruses 2019; 11:v11050410. [PMID: 31052499 PMCID: PMC6563240 DOI: 10.3390/v11050410] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/01/2019] [Indexed: 02/06/2023] Open
Abstract
Ebola virus (EBOV) disease can result in a range of symptoms anywhere from virtually asymptomatic to severe hemorrhagic fever during acute infection. Additionally, spans of asymptomatic persistence in recovering survivors is possible, during which transmission of the virus may occur. In acute infection, substantial cytokine storm and bystander lymphocyte apoptosis take place, resulting in uncontrolled, systemic inflammation in affected individuals. Recently, studies have demonstrated the presence of EBOV proteins VP40, glycoprotein (GP), and nucleoprotein (NP) packaged into extracellular vesicles (EVs) during infection. EVs containing EBOV proteins have been shown to induce apoptosis in recipient immune cells, as well as contain pro-inflammatory cytokines. In this manuscript, we review the current field of knowledge on EBOV EVs including the mechanisms of their biogenesis, their cargo and their effects in recipient cells. Furthermore, we discuss some of the effects that may be induced by EBOV EVs that have not yet been characterized and highlight the remaining questions and future directions.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Spencer W Stonier
- Department, Emergent BioSolutions, Gaithersburg, MD 20879, USA.
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - John M Dye
- Virology Division, U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA.
| | - Steven Jacobson
- Viral Immunology Section, Neuroimmunology Branch, National Institute for Neurological Disease and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - M Javad Aman
- Department. Integrated BioTherapeutics, Inc., Gaithersburg, MD 20850, USA.
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
5
|
Pleet ML, Erickson J, DeMarino C, Barclay RA, Cowen M, Lepene B, Liang J, Kuhn JH, Prugar L, Stonier SW, Dye JM, Zhou W, Liotta LA, Aman MJ, Kashanchi F. Ebola Virus VP40 Modulates Cell Cycle and Biogenesis of Extracellular Vesicles. J Infect Dis 2018; 218:S365-S387. [PMID: 30169850 PMCID: PMC6249571 DOI: 10.1093/infdis/jiy472] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Ebola virus (EBOV) mainly targets myeloid cells; however, extensive death of T cells is often observed in lethal infections. We have previously shown that EBOV VP40 in exosomes causes recipient immune cell death. Methods Using VP40-producing clones, we analyzed donor cell cycle, extracellular vesicle (EV) biogenesis, and recipient immune cell death. Transcription of cyclin D1 and nuclear localization of VP40 were examined via kinase and chromatin immunoprecipitation assays. Extracellular vesicle contents were characterized by mass spectrometry, cytokine array, and western blot. Biosafety level-4 facilities were used for wild-type Ebola virus infection studies. Results VP40 EVs induced apoptosis in recipient T cells and monocytes. VP40 clones were accelerated in growth due to cyclin D1 upregulation, and nuclear VP40 was found bound to the cyclin D1 promoter. Accelerated cell cycling was related to EV biogenesis, resulting in fewer but larger EVs. VP40 EV contents were enriched in ribonucleic acid-binding proteins and cytokines (interleukin-15, transforming growth factor-β1, and interferon-γ). Finally, EBOV-infected cell and animal EVs contained VP40, nucleoprotein, and glycoprotein. Conclusions Nuclear VP40 upregulates cyclin D1 levels, resulting in dysregulated cell cycle and EV biogenesis. Packaging of cytokines and EBOV proteins into EVs from infected cells may be responsible for the decimation of immune cells during EBOV pathogenesis.
Collapse
Affiliation(s)
- Michelle L Pleet
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - James Erickson
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Catherine DeMarino
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Robert A Barclay
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | - Maria Cowen
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| | | | - Janie Liang
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Jens H Kuhn
- Integrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland
| | - Laura Prugar
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland
| | - Spencer W Stonier
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland
| | - John M Dye
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia
| | - M Javad Aman
- Integrated BioTherapeutics, Inc., Gaithersburg, Maryland
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, Virginia
| |
Collapse
|
6
|
Martin S, Chiramel AI, Schmidt ML, Chen YC, Whitt N, Watt A, Dunham EC, Shifflett K, Traeger S, Leske A, Buehler E, Martellaro C, Brandt J, Wendt L, Müller A, Peitsch S, Best SM, Stech J, Finke S, Römer-Oberdörfer A, Groseth A, Feldmann H, Hoenen T. A genome-wide siRNA screen identifies a druggable host pathway essential for the Ebola virus life cycle. Genome Med 2018; 10:58. [PMID: 30081931 PMCID: PMC6090742 DOI: 10.1186/s13073-018-0570-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/13/2018] [Indexed: 01/01/2023] Open
Abstract
Background The 2014–2016 Ebola virus (EBOV) outbreak in West Africa highlighted the need for improved therapeutic options against this virus. Approaches targeting host factors/pathways essential for the virus are advantageous because they can potentially target a wide range of viruses, including newly emerging ones and because the development of resistance is less likely than when targeting the virus directly. However, systematic approaches for screening host factors important for EBOV have been hampered by the necessity to work with this virus at biosafety level 4 (BSL4). Methods In order to identify host factors involved in the EBOV life cycle, we performed a genome-wide siRNA screen comprising 64,755 individual siRNAs against 21,566 human genes to assess their activity in EBOV genome replication and transcription. As a screening platform, we used reverse genetics-based life cycle modelling systems that recapitulate these processes without the need for a BSL4 laboratory. Results Among others, we identified the de novo pyrimidine synthesis pathway as an essential host pathway for EBOV genome replication and transcription, and confirmed this using infectious EBOV under BSL4 conditions. An FDA-approved drug targeting this pathway showed antiviral activity against infectious EBOV, as well as other non-segmented negative-sense RNA viruses. Conclusions This study provides a minable data set for every human gene regarding its role in EBOV genome replication and transcription, shows that an FDA-approved drug targeting one of the identified pathways is highly efficacious in vitro, and demonstrates the power of life cycle modelling systems for conducting genome-wide host factor screens for BSL4 viruses. Electronic supplementary material The online version of this article (10.1186/s13073-018-0570-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA.,Present address: Department of Discovery Oncology, Genentech, 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Abhilash I Chiramel
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Marie Luisa Schmidt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Yu-Chi Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Nadia Whitt
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Ari Watt
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Eric C Dunham
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Kyle Shifflett
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Shelby Traeger
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Anne Leske
- Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 31 Center Drive, Bethesda, MD, 20892, USA
| | - Cynthia Martellaro
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Janine Brandt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Lisa Wendt
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Andreas Müller
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stephanie Peitsch
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Sonja M Best
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Jürgen Stech
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Stefan Finke
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Angela Römer-Oberdörfer
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Allison Groseth
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA.,Junior Research Group Arenavirus Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany
| | - Heinz Feldmann
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA
| | - Thomas Hoenen
- Laboratory of Virology, Division of Intramural Research, National Institute for Allergy and Infectious Diseases, National Institutes of Health, 903 S 4th St., Hamilton, MT, 59840, USA. .,Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Südufer 10, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
7
|
Joshi P, Lee MY. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures. BIOSENSORS 2015; 5:768-90. [PMID: 26694477 PMCID: PMC4697144 DOI: 10.3390/bios5040768] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 12/26/2022]
Abstract
High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology.
Collapse
Affiliation(s)
- Pranav Joshi
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| | - Moo-Yeal Lee
- Department of Chemical & Biomedical Engineering, Cleveland State University, 1960 East 24th Street Cleveland, Ohio, OH 44115-2214, USA.
| |
Collapse
|
8
|
Zhang X, Liu D, Zhang S, Wei X, Song J, Zhang Y, Jin M, Shen Z, Wang X, Feng Z, Li J. Host-virus interaction: the antiviral defense function of small interfering RNAs can be enhanced by host microRNA-7 in vitro. Sci Rep 2015; 5:9722. [PMID: 26067353 PMCID: PMC4464290 DOI: 10.1038/srep09722] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 03/09/2015] [Indexed: 11/16/2022] Open
Abstract
Small interfering RNAs (siRNAs) directed against poliovirus (PV) and other viruses effectively inhibit viral replication and have been developed as antiviral agents. Here, we demonstrate that a specific siRNA targeting the region between nucleotides 100–125 (siRNA-100) from the 5′-untranslated region (5′-UTR) of PV plays a critical role in inhibiting PV replication. Our data demonstrate that siRNA-100 treatment can greatly reduce PV titers, resulting in up-regulation of host microRNA-7 (miR-7), which in turn, leads to enhance inhibition of PV infection further. Moreover, our results suggest that siRNA-100 can also impair the spread of PV to uninfected cells by increasing host resistance to PV, resulting in decreasing necrosis and cytopathic effects (CPE) levels, as well as prolonging the survival of infected cells. Indeed, the active antiviral effect of siRNA-100 was potentially supplemented by the activity of miR-7, and both of them can serve as stabilizing factors for maintenance of cellular homeostasis. Results of this study identify a molecular mechanism of RNAi for antiviral defense, and extend our knowledge of the complex interplay between host and PV, which will provide a basis for the development of effective RNAi-based therapies designed to inhibit PV replication and protect host cells.
Collapse
Affiliation(s)
- Xiaoying Zhang
- Stem Cell Center, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing, 100700, P.R. China
| | - Dongyun Liu
- Departments of Neonatal Intensive Care Unit, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, P.R. China
| | - Sheng Zhang
- Stem Cell Center, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing, 100700, P.R. China
| | - Xiujuan Wei
- Stem Cell Center, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing, 100700, P.R. China
| | - Jie Song
- Stem Cell Center, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing, 100700, P.R. China
| | - Yupei Zhang
- Stem Cell Center, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing, 100700, P.R. China
| | - Min Jin
- Department of Environment and Health, Institute of Health and Environmental medicine, Key Laboratory of Risk Assessment and Control for Environment &Food Safety, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China
| | - Zhiqiang Shen
- Department of Environment and Health, Institute of Health and Environmental medicine, Key Laboratory of Risk Assessment and Control for Environment &Food Safety, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China
| | - Xinwei Wang
- Department of Environment and Health, Institute of Health and Environmental medicine, Key Laboratory of Risk Assessment and Control for Environment &Food Safety, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China
| | - Zhichun Feng
- Stem Cell Center, BaYi Children's Hospital of The General Military Hospital of Beijing PLA, 5 Nanmencang Road, Dongcheng District, Beijing, 100700, P.R. China
| | - Junwen Li
- Department of Environment and Health, Institute of Health and Environmental medicine, Key Laboratory of Risk Assessment and Control for Environment &Food Safety, 1 Dali Road, Heping District, Tianjin, 300050, P.R. China
| |
Collapse
|
9
|
Xue B, Huang W, Yuan X, Xu B, Lou Y, Zhou Q, Ran F, Ge Z, Li R, Cui J. YSY01A, a Novel Proteasome Inhibitor, Induces Cell Cycle Arrest on G2 Phase in MCF-7 Cells via ERα and PI3K/Akt Pathways. J Cancer 2015; 6:319-26. [PMID: 25767601 PMCID: PMC4349871 DOI: 10.7150/jca.10733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 11/15/2014] [Indexed: 11/05/2022] Open
Abstract
Given that the proteasome is essential for multiple cellular processes by degrading diverse regulatory proteins, inhibition of the proteasome has emerged as an attractive target for anti-cancer therapy. YSY01A is a novel small molecule compound targeting the proteasome. The compound was found to suppress viability of MCF-7 cells and cause limited cell membrane damage as determined by sulforhodamine B assay (SRB) and CytoTox 96(®) non-radioactive cytotoxicity assay. High-content screening (HCS) further shows that YSY01A treatment induces cell cycle arrest on G2 phase within 24 hrs. Label-free quantitative proteomics (LFQP), which allows extensive comparison of cellular responses following YSY01A treatment, suggests that various regulatory proteins including cell cycle associated proteins and PI3K/Akt pathway may be affected. Furthermore, YSY01A increases p-CDC-2, p-FOXO3a, p53, p21(Cip1) and p27(Kip1) but decreases p-Akt, p-ERα as confirmed by Western blotting. Therefore, YSY01A represents a potential therapeutic for breast cancer MCF-7 by inducing G2 phase arrest via ERα and PI3K/Akt pathways.
Collapse
Affiliation(s)
- Bingjie Xue
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Wei Huang
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Xia Yuan
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Bo Xu
- 2. Instrumental Analysis Center of State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Yaxin Lou
- 3. Lab of Proteomics Medical and Healthy Analytical Center, Peking University, Beijing, China
| | - Quan Zhou
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Fuxiang Ran
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| | - Zemei Ge
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Runtao Li
- 4. Peking University School of Pharmaceutical Sciences Department of Medicinal Chemistry, Beijing, China
| | - Jingrong Cui
- 1. State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 100083, Beijing, China
| |
Collapse
|
10
|
Prochukhanova AR, Lublinskaya OG, Azarenok AA, Nazarova AV, Zenin VV, Zhilinskaya IN. Alterations in cell cycle dynamics in human endothelium cell culture infected with influenza virus. CELL AND TISSUE BIOLOGY 2015; 9:326-329. [PMID: 32215193 PMCID: PMC7089363 DOI: 10.1134/s1990519x15040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Indexed: 11/22/2022]
Abstract
The cell cycle of endothelium EAhy 926 cell culture infected with influenza virus has been studied. Cytometric analysis of cell culture synchronized by contact inhibition revealed the elongation of the S phase of the cell cycle in EAhy 926 cells under the influence of influenza virus. This result was shown in an EAhy 926 culture infected with influenza virus and treated with nocodazole. Comparison of a lung carcinoma A549 cell line in which influenza virus causes G0/G1 arrest and of an endothelial EAhy 926 cell line in which the same infection leads to S-phase elongation allows it to be suggested that different effects of influenza virus on cell cycle dynamics depend on the origin of infected cells.
Collapse
Affiliation(s)
| | - O G Lublinskaya
- 2Institution of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - A A Azarenok
- 1Influenza Institution, Ministry of Health, St. Petersburg, Russia
| | - A V Nazarova
- 1Influenza Institution, Ministry of Health, St. Petersburg, Russia
| | - V V Zenin
- 2Institution of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - I N Zhilinskaya
- 1Influenza Institution, Ministry of Health, St. Petersburg, Russia
| |
Collapse
|
11
|
Mudhasani R, Kota KP, Retterer C, Tran JP, Tritsch SR, Zamani R, Whitehouse CA, Bavari S. High-content image-based screening of a signal transduction pathway inhibitor small-molecule library against highly pathogenic RNA viruses. ACTA ACUST UNITED AC 2014; 20:141-52. [PMID: 25342145 DOI: 10.1177/1087057114556253] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High-content image-based screening was developed as an approach to test a small-molecule library of compounds targeting signal transduction pathways for antiviral activity against multiple highly pathogenic RNA viruses. Of the 2843 compounds screened, 120 compounds exhibited ≥60% antiviral activity. Four compounds (E225-0969, E528-0039, G118-0778, and G544-0735), which were most active against Rift Valley fever virus (RVFV) and showed broad-spectrum antiviral activity, were selected for further evaluation for their concentration-response profile and cytotoxicity. These compounds did not show any visible cytotoxicity at the highest concentration of compound tested (200 µM). All four of these compounds were more active than ribavirin against several viruses. One compound, E225-0969, had the lowest effective concentration (EC50 = 1.9-8.92 µM) for all the viruses tested. This compound was 13- and 43-fold more inhibitory against RVFV and Chikungunya virus (CHIKV), respectively, than ribavirin. The highest selectivity index (>106.2) was for E225-0969 against CHIKV. Time-of-addition assays suggested that all four lead compounds targeted early steps in the viral life cycle (entry and/or replication) but not virus egress. Overall, this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals against highly pathogenic viruses.
Collapse
Affiliation(s)
- Rajini Mudhasani
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Krishna P Kota
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Cary Retterer
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Julie P Tran
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sarah R Tritsch
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Rouzbeh Zamani
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Chris A Whitehouse
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| | - Sina Bavari
- Therapeutic Discovery Center, Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, USA
| |
Collapse
|
12
|
Le Guezennec X, Phong M, Nor L, Kim N. Miniaturization of Mitotic Index Cell-Based Assay Using “Wall-Less” Plate Technology. Assay Drug Dev Technol 2014; 12:129-35. [DOI: 10.1089/adt.2013.555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
| | | | | | - Namyong Kim
- Curiox Biosystems Pte Ltd., Singapore
- Curiox Biosystems, Inc., San Carlos, California
| |
Collapse
|
13
|
Du L, Borkowski R, Zhao Z, Ma X, Yu X, Xie XJ, Pertsemlidis A. A high-throughput screen identifies miRNA inhibitors regulating lung cancer cell survival and response to paclitaxel. RNA Biol 2013; 10:1700-13. [PMID: 24157646 DOI: 10.4161/rna.26541] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
microRNAs (miRNAs) are small RNAs endogenously expressed in multiple organisms that regulate gene expression largely by decreasing levels of target messenger RNAs (mRNAs). Over the past few years, numerous studies have demonstrated critical roles for miRNAs in the pathogenesis of many cancers, including lung cancer. Cellular miRNA levels can be easily manipulated, showing the promise of developing miRNA-targeted oligos as next-generation therapeutic agents. In a comprehensive effort to identify novel miRNA-based therapeutic agents for lung cancer treatment, we combined a high-throughput screening platform with a library of chemically synthesized miRNA inhibitors to systematically identify miRNA inhibitors that reduce lung cancer cell survival and those that sensitize cells to paclitaxel. By screening three lung cancer cell lines with different genetic backgrounds, we identified miRNA inhibitors that potentially have a universal cytotoxic effect on lung cancer cells and miRNA inhibitors that sensitize cells to paclitaxel treatment, suggesting the potential of developing these miRNA inhibitors as therapeutic agents for lung cancer. We then focused on characterizing the inhibitors of three miRNAs (miR-133a/b, miR-361-3p, and miR-346) that have the most potent effect on cell survival. We demonstrated that two of the miRNA inhibitors (miR-133a/b and miR-361-3p) decrease cell survival by activating caspase-3/7-dependent apoptotic pathways and inducing cell cycle arrest in S phase. Future studies are certainly needed to define the mechanisms by which the identified miRNA inhibitors regulate cell survival and drug response, and to explore the potential of translating the current findings into clinical applications.
Collapse
Affiliation(s)
- Liqin Du
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Robert Borkowski
- Division of Basic Sciences; Southwestern Graduate School of Biomedical Sciences; UT Southwestern Medical Center; Dallas, TX USA
| | - Zhenze Zhao
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Xiuye Ma
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Xiaojie Yu
- Graduate School of Biomedical Sciences; UT Health Science Center at San Antonio; San Antonio, TX USA
| | - Xian-Jin Xie
- Department of Clinical Sciences; UT Southwestern Medical Center; Dallas, TX USA
| | - Alexander Pertsemlidis
- Greehey Children's Cancer Research Institute; Department of Cellular and Structural Biology; UT Health Science Center at San Antonio; San Antonio, TX USA; Greehey Children's Cancer Research Institute; Department of Pediatrics; UT Health Science Center at San Antonio; San Antonio, TX USA
| |
Collapse
|
14
|
Bjornson ZB, Nolan GP, Fantl WJ. Single-cell mass cytometry for analysis of immune system functional states. Curr Opin Immunol 2013; 25:484-94. [PMID: 23999316 DOI: 10.1016/j.coi.2013.07.004] [Citation(s) in RCA: 167] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/05/2013] [Accepted: 07/08/2013] [Indexed: 01/11/2023]
Abstract
Mass cytometry facilitates high-dimensional, quantitative analysis of the effects of bioactive molecules on cell populations at single-cell resolution. Datasets are generated with panels of up to 45 antibodies. Each antibody is conjugated to a polymer chelated with a stable metal isotope, usually in the lanthanide series of the periodic table. Antibody panels recognize surface markers to delineate cell types simultaneously with intracellular signaling molecules to measure biological functions, such as metabolism, survival, DNA damage, cell cycle and apoptosis, to provide an overall determination of the network state of an individual cell. This review will cover the basics of mass cytometry as well as outline assays developed for the platform that enhance the immunologist's analytical arsenal.
Collapse
Affiliation(s)
- Zach B Bjornson
- Stanford University School of Medicine, Department of Microbiology & Immunology, Baxter Laboratory for Stem Cell Biology, 269 Campus Drive, Stanford, CA 94305-5175, USA
| | | | | |
Collapse
|