1
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Novel insights into the host cell glycan binding profile of human metapneumovirus. J Virol 2024; 98:e0164123. [PMID: 38690874 PMCID: PMC11237588 DOI: 10.1128/jvi.01641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024] Open
Abstract
Numerous viruses have been found to exploit glycoconjugates expressed on human cells as their initial attachment factor for viral entry and infection. The virus-cell glycointeractome, when characterized, may serve as a template for antiviral drug design. Heparan sulfate proteoglycans extensively decorate the human cell surface and were previously described as a primary receptor for human metapneumovirus (HMPV). After respiratory syncytial virus, HMPV is the second most prevalent respiratory pathogen causing respiratory tract infection in young children. To date, there is neither vaccine nor drug available to prevent or treat HMPV infection. Using a multidisciplinary approach, we report for the first time the glycointeractome of the HMPV fusion (F) protein, a viral surface glycoprotein that is essential for target-cell recognition, attachment, and entry. Our glycan microarray and surface plasmon resonance results suggest that Galβ1-3/4GlcNAc moieties that may be sialylated or fucosylated are readily recognized by HMPV F. The bound motifs are highly similar to the N-linked and O-linked glycans primarily expressed on the human lung epithelium. We demonstrate that the identified glycans have the potential to compete with the cellular receptors used for HMPV entry and consequently block HMPV infection. We found that lacto-N-neotetraose demonstrated the strongest HMPV binding inhibition in a cell infection assay. Our current findings offer an encouraging and novel avenue for the design of anti-HMPV drug candidates using oligosaccharide templates.IMPORTANCEAll cells are decorated with a dense coat of sugars that makes a sugar code. Many respiratory viruses exploit this sugar code by binding to these sugars to cause infection. Human metapneumovirus is a leading cause for acute respiratory tract infections. Despite its medical importance, there is no vaccine or antiviral drug available to prevent or treat human metapneumovirus infection. This study investigates how human metapneumovirus binds to sugars in order to more efficiently infect the human host. We found that human metapneumovirus binds to a diverse range of sugars and demonstrated that these sugars can ultimately block viral infection. Understanding how viruses can take advantage of the sugar code on our cells could identify new intervention and treatment strategies to combat viral disease.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
2
|
Guo L, Li L, Liu L, Zhang T, Sun M. Neutralising antibodies against human metapneumovirus. THE LANCET. MICROBE 2023; 4:e732-e744. [PMID: 37499668 DOI: 10.1016/s2666-5247(23)00134-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 07/29/2023]
Abstract
Human metapneumovirus (hMPV) is one of the leading causes of respiratory infection. Since its discovery in 2001, no specific antiviral or vaccine has been available in contrast to its closely related family member human respiratory syncytial virus (hRSV). Neutralising monoclonal antibodies (nMAbs) are the core effectors of vaccines and are essential therapeutic immune drugs against infectious pathogens. The development of nMAbs against hMPV has accelerated in recent years as a result of breakthroughs in viral fusion (F) protein structural biology and experience with hRSV and other enveloped viruses. We provide an overview of the potent F-specific nMAbs of hMPV, generalise their targeting F antigen epitopes, and discuss the nMAb development strategy and future directions for hMPV and broad-spectrum hMPV, hRSV nMabs, and vaccine research and development.
Collapse
Affiliation(s)
- Lei Guo
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Li
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Li Liu
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China
| | - Tiesong Zhang
- Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, Yunnan, China.
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, Yunnan, China.
| |
Collapse
|
3
|
Miller RJ, Mousa JJ. Structural basis for respiratory syncytial virus and human metapneumovirus neutralization. Curr Opin Virol 2023; 61:101337. [PMID: 37544710 PMCID: PMC10421620 DOI: 10.1016/j.coviro.2023.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 08/08/2023]
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) continue to be a global burden to infants, the elderly, and immunocompromised individuals. In the past ten years, there has been substantial progress in the development of new vaccine candidates and therapies against these viruses. These advancements were guided by the structural elucidation of the major surface glycoproteins for these viruses, the fusion (F) protein and attachment (G) protein. The identification of immunodominant epitopes on the RSV F and hMPV F proteins has expanded current knowledge on antibody-mediated immune responses, which has led to new approaches for vaccine and therapeutic development through the stabilization of pre-fusion constructs of the F protein and pre-fusion-specific monoclonal antibodies with high potency and efficacy. In this review, we describe structural characteristics of known antigenic sites on the RSV and hMPV proteins, their influence on the immune response, and current progress in vaccine and therapeutic development.
Collapse
Affiliation(s)
- Rose J Miller
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Jarrod J Mousa
- Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA; Department of Biochemistry and Molecular Biology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
4
|
Tosheva II, Saygan KS, Mijnhardt SM, Russell CJ, Fraaij PLA, Herfst S. Hemagglutinin stability as a key determinant of influenza A virus transmission via air. Curr Opin Virol 2023; 61:101335. [PMID: 37307646 DOI: 10.1016/j.coviro.2023.101335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/12/2023] [Accepted: 05/14/2023] [Indexed: 06/14/2023]
Abstract
To cause pandemics, zoonotic respiratory viruses need to adapt to replication in and spread between humans, either via (indirect or direct) contact or through the air via droplets and aerosols. To render influenza A viruses transmissible via air, three phenotypic viral properties must change, of which receptor-binding specificity and polymerase activity have been well studied. However, the third adaptive property, hemagglutinin (HA) acid stability, is less understood. Recent studies show that there may be a correlation between HA acid stability and virus survival in the air, suggesting that a premature conformational change of HA, triggered by low pH in the airways or droplets, may render viruses noninfectious before they can reach a new host. We here summarize available data from (animal) studies on the impact of HA acid stability on airborne transmission and hypothesize that the transmissibility of other respiratory viruses may also be impacted by an acidic environment in the airways.
Collapse
Affiliation(s)
- Ilona I Tosheva
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kain S Saygan
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Suzanne Ma Mijnhardt
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands
| | - Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Pieter LA Fraaij
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands; Department of Paediatrics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Sander Herfst
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands; Pandemic and Disaster Preparedness Center, Delft, Rotterdam, the Netherlands.
| |
Collapse
|
5
|
A Candidate Therapeutic Monoclonal Antibody Inhibits Both HRSV and HMPV Replication in Mice. Biomedicines 2022; 10:biomedicines10102516. [PMID: 36289776 PMCID: PMC9599547 DOI: 10.3390/biomedicines10102516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Human metapneumovirus (HMPV) and human respiratory virus (HRSV) are two leading causes of acute respiratory tract infection in young children. While there is no licensed drug against HMPV, the monoclonal antibody (mAb) Palivizumab is approved against HRSV for prophylaxis use only. Novel therapeutics against both viruses are therefore needed. Here, we describe the identification of human mAbs targeting these viruses by using flow cytometry-based cell sorting. One hundred and two antibodies were initially identified from flow cytometry-based cell sorting as binding to the fusion protein from HRSV, HMPV or both. Of those, 95 were successfully produced in plants, purified and characterized for binding activity by ELISA and neutralization assays as well as by inhibition of virus replication in mice. Twenty-two highly reactive mAbs targeting either HRSV or HMPV were isolated. Of these, three mAbs inhibited replication in vivo of a single virus while one mAb could reduce both HRSV and HMPV titers in the lung. Overall, this study identifies several human mAbs with virus-specific therapeutic potential and a unique mAb with inhibitory activities against both HRSV and HMPV.
Collapse
|
6
|
Van Den Bergh A, Bailly B, Guillon P, von Itzstein M, Dirr L. Antiviral strategies against human metapneumovirus: Targeting the fusion protein. Antiviral Res 2022; 207:105405. [PMID: 36084851 DOI: 10.1016/j.antiviral.2022.105405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/31/2022] [Indexed: 11/02/2022]
Abstract
Human metapneumoviruses have emerged in the past decades as an important global pathogen that causes severe upper and lower respiratory tract infections. Children under the age of 2, the elderly and immunocompromised individuals are more susceptible to HMPV infection than the general population due to their suboptimal immune system. Despite the recent discovery of HMPV as a novel important respiratory virus, reports have rapidly described its epidemiology, biology, and pathogenesis. However, progress is still to be made in the development of vaccines and drugs against HMPV infection as none are currently available. Herein, we discuss the importance of HMPV and review the reported strategies for anti-HMPV drug candidates. We also present the fusion protein as a promising antiviral drug target due to its multiple roles in the HMPV lifecycle. This key viral protein has previously been targeted by a range of inhibitors, which will be discussed as they represent opportunities for future drug design.
Collapse
Affiliation(s)
| | - Benjamin Bailly
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Patrice Guillon
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| | - Larissa Dirr
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia.
| |
Collapse
|
7
|
Shibuya M, Togashi N, Inui T, Okubo Y, Endo W, Miyabayashi T, Sato R, Takezawa Y, Kodama K, Ikeda M, Kawashima A, Haginoya K. Multiple Cerebral Hemorrhages and White Matter Lesions Developing after Severe hMPV Pneumonia in a Patient with Trisomy 13: A Case Report and Review of the Literature. TOHOKU J EXP MED 2022; 258:49-54. [PMID: 35793947 DOI: 10.1620/tjem.2022.j056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Moriei Shibuya
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Noriko Togashi
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Takehiko Inui
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Yukimune Okubo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Wakaba Endo
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | | | - Ryo Sato
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Yusuke Takezawa
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Kaori Kodama
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | - Miki Ikeda
- Department of Pediatric Neurology, Miyagi Children's Hospital
| | | | | |
Collapse
|
8
|
Zoonotic Origins of Human Metapneumovirus: A Journey from Birds to Humans. Viruses 2022; 14:v14040677. [PMID: 35458407 PMCID: PMC9028271 DOI: 10.3390/v14040677] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/23/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Metapneumoviruses, members of the family Pneumoviridae, have been identified in birds (avian metapneumoviruses; AMPV’s) and humans (human metapneumoviruses; HMPV’s). AMPV and HMPV are closely related viruses with a similar genomic organization and cause respiratory tract illnesses in birds and humans, respectively. AMPV can be classified into four subgroups, A–D, and is the etiological agent of turkey rhinotracheitis and swollen head syndrome in chickens. Epidemiological studies have indicated that AMPV also circulates in wild bird species which may act as reservoir hosts for novel subtypes. HMPV was first discovered in 2001, but retrospective studies have shown that HMPV has been circulating in humans for at least 50 years. AMPV subgroup C is more closely related to HMPV than to any other AMPV subgroup, suggesting that HMPV has evolved from AMPV-C following zoonotic transfer. In this review, we present a historical perspective on the discovery of metapneumoviruses and discuss the host tropism, pathogenicity, and molecular characteristics of the different AMPV and HMPV subgroups to provide increased focus on the necessity to better understand the evolutionary pathways through which HMPV emerged as a seasonal endemic human respiratory virus.
Collapse
|
9
|
Feng FE, Zhang GC, Liu FQ, He Y, Zhu XL, Liu X, Wang Y, Wang JZ, Fu HX, Chen YH, Han W, Chang YJ, Xu LP, Liu KY, Huang XJ, Zhang XH. HCMV modulates c-Mpl/IEX-1 pathway-mediated megakaryo/thrombopoiesis via PDGFRα and αvβ3 receptors after allo-HSCT. J Cell Physiol 2021; 236:6726-6741. [PMID: 33611789 DOI: 10.1002/jcp.30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 11/08/2022]
Abstract
Thrombocytopenia is a common complication of human cytomegalovirus (HCMV) infection in immunocompromised hosts, which contributes to poor prognosis even in patients receiving antiviral treatment. Here, we investigated the megakaryo/thrombopoiesis process, including the involvement of the c-Mpl/IEX-1 pathway, after HCMV infection, identified receptors mediating the interaction between megakaryocytes (MKs) and HCMV, and explored novel therapeutic targets. Our data shows that HCMV directly infects megakaryocytes in patients with HCMV DNAemia and influences megakaryopoiesis via the c-Mpl/IEX-1 pathway throughout megakaryocyte maturation, apoptosis, and platelet generation in vivo and in vitro. After treatment with inhibitors of PDGFRα and αvβ3, the HCMV infection rate in MKs was significantly reduced, suggesting that IMC-3G3 and anti-αvβ3 are potential therapeutic alternatives for viral infection. In summary, our study proposes a possible mechanism and potential treatments for thrombocytopenia caused by HCMV infection and other viral diseases associated with abnormal hemostasis.
Collapse
Affiliation(s)
- Fei-Er Feng
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Gao-Chao Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Feng-Qi Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Yun He
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Xiao-Lu Zhu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Xiao Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Yu Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Jing-Zhi Wang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Hai-Xia Fu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Yu-Hong Chen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Wei Han
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Ying-Jun Chang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Lan-Ping Xu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| | - Xiao-Hui Zhang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Centre of Hematology, Peking University, Beijing, China
| |
Collapse
|
10
|
Respiratory Syncytial Virus and Human Metapneumovirus Infections in Three-Dimensional Human Airway Tissues Expose an Interesting Dichotomy in Viral Replication, Spread, and Inhibition by Neutralizing Antibodies. J Virol 2020; 94:JVI.01068-20. [PMID: 32759319 DOI: 10.1128/jvi.01068-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two of the leading causes of respiratory infections in children and elderly and immunocompromised patients worldwide. There is no approved treatment for HMPV and only one prophylactic treatment against RSV, palivizumab, for high-risk infants. Better understanding of the viral lifecycles in a more relevant model system may help identify novel therapeutic targets. By utilizing three-dimensional (3-D) human airway tissues to examine viral infection in a physiologically relevant model system, we showed that RSV infects and spreads more efficiently than HMPV, with the latter requiring higher multiplicities of infection (MOIs) to yield similar levels of infection. Apical ciliated cells were the target for both viruses, but RSV apical release was significantly more efficient than HMPV. In RSV- or HMPV-infected cells, cytosolic inclusion bodies containing the nucleoprotein, phosphoprotein, and respective viral genomic RNA were clearly observed in human airway epithelial (HAE) culture. In HMPV-infected cells, actin-based filamentous extensions were more common (35.8%) than those found in RSV-infected cells (4.4%). Interestingly, neither RSV nor HMPV formed syncytia in HAE tissues. Palivizumab and nirsevimab effectively inhibited entry and spread of RSV in HAE tissues, with nirsevimab displaying significantly higher potency than palivizumab. In contrast, 54G10 completely inhibited HMPV entry but only modestly reduced viral spread, suggesting HMPV may use alternative mechanisms for spread. These results represent the first comparative analysis of infection by the two pneumoviruses in a physiologically relevant model, demonstrating an interesting dichotomy in the mechanisms of infection, spread, and consequent inhibition of the viral lifecycles by neutralizing monoclonal antibodies.IMPORTANCE Respiratory syncytial virus and human metapneumovirus are leading causes of respiratory illness worldwide, but limited treatment options are available. To better target these viruses, we examined key aspects of the viral life cycle in three-dimensional (3-D) human airway tissues. Both viruses establish efficient infection through the apical surface, but efficient spread and apical release were seen for respiratory syncytial virus (RSV) but not human metapneumovirus (HMPV). Both viruses form inclusion bodies, minimally composed of nucleoprotein (N), phosphoprotein (P), and viral RNA (vRNA), indicating that these structures are critical for replication in this more physiological model. HMPV formed significantly more long, filamentous actin-based extensions in human airway epithelial (HAE) tissues than RSV, suggesting HMPV may promote cell-to-cell spread via these extensions. Lastly, RSV entry and spread were fully inhibited by neutralizing antibodies palivizumab and the novel nirsevimab. In contrast, while HMPV entry was fully inhibited by 54G10, a neutralizing antibody, spread was only modestly reduced, further supporting a cell-to-cell spread mechanism.
Collapse
|
11
|
Solís-Rodríguez M, Alpuche-Solís ÁG, Tirado-Mendoza RG. Metapneumovirus humano: epidemiología y posibles tratamientos profilácticos. REVISTA DE LA FACULTAD DE MEDICINA 2020. [DOI: 10.22201/fm.24484865e.2020.63.3.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2001 in the Netherlands, Human metapneumovirus (hMPV) was identified as a “new” etiologic agent causing acute respiratory infections in children younger than 5 years old;
however, it has also been isolated in the elderly and immunocompromised people. This virus is considered the second etiological agent in acute diseases of the respiratory tract. Currently, the estimated cost of IRAs in our country is of 9,000USD per inpatient.
hMPV is a member of the genus Metapneumovirus, family Pneumoviridae, and it belongs to the order Mononegavirales that is part of the negative single-stranded ribonucleic acid (RNA) virus, consisting of eight genes ordered: 3’-N-P-M-FM2-SH-G-L-5 ‘, and which encodes for 9 proteins. Of these proteins, the F fusion glycoprotein is highly conserved in the genus Metapneumovirus, and is the major antigenic determinant, and because an approved vaccine doesn’t exist, it has been used as a candidate epitope for the design of a vaccine that confers host immunity or as a therapeutic target in the creation of antiviral peptides that inhibit the fusion of the virus to its target cell and to avoid infection in subjects at high risk of contagion since there is currently none accepted by COFEPRIS as a prophylactic treatment against hMPV.
Key words: hMPV; respiratory infections; epitopes; protein F;vaccines.
Collapse
Affiliation(s)
- Marcela Solís-Rodríguez
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT). Laboratorio de Biología Molecular de Plantas. San Luis Potosí, S.L.P., México
| | - Ángel G. Alpuche-Solís
- Instituto Potosino de Investigación Científica y Tecnológica (IPICYT). Laboratorio de Biología Molecular de Plantas. San Luis Potosí, S.L.P., México
| | - Rocío G. Tirado-Mendoza
- Universidad Nacional Autónoma de México (UNAM). Facultad de Medicina. Departamento de Microbiología y Parasitología. Laboratorio de Biología del Citoesqueleto y Virología. Ciudad de México. México
| |
Collapse
|
12
|
Kenmoe S, Vernet MA, Penlap Beng V, Vabret A, Njouom R. Phylogenetic variability of Human Metapneumovirus in patients with acute respiratory infections in Cameroon, 2011–2014. J Infect Public Health 2020; 13:606-612. [PMID: 31530440 DOI: 10.1016/j.jiph.2019.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
|
13
|
Dubois J, Pizzorno A, Cavanagh MH, Padey B, Nicolas de Lamballerie C, Uyar O, Venable MC, Carbonneau J, Traversier A, Julien T, Lavigne S, Couture C, Lina B, Hamelin MÈ, Terrier O, Rosa-Calatrava M, Boivin G. Strain-Dependent Impact of G and SH Deletions Provide New Insights for Live-Attenuated HMPV Vaccine Development. Vaccines (Basel) 2019; 7:vaccines7040164. [PMID: 31671656 PMCID: PMC6963613 DOI: 10.3390/vaccines7040164] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/23/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Human metapneumovirus (HMPV) is a major pediatric respiratory pathogen with currently no specific treatment or licensed vaccine. Different strategies to prevent this infection have been evaluated, including live-attenuated vaccines (LAV) based on SH and/or G protein deletions. This approach showed promising outcomes but has not been evaluated further using different viral strains. In that regard, we previously showed that different HMPV strains harbor distinct in vitro fusogenic and in vivo pathogenic phenotypes, possibly influencing the selection of vaccine strains. In this study, we investigated the putative contribution of the low conserved SH or G accessory proteins in such strain-dependent phenotypes and generated recombinant wild type (WT) and SH- or G-deleted viruses derived from two different patient-derived HMPV strains, A1/C-85473 and B2/CAN98-75. The ΔSH and ΔG deletions led to different strain-specific phenotypes in both LLC-MK2 cell and reconstituted human airway epithelium models. More interestingly, the ΔG-85473 and especially ΔSH-C-85473 recombinant viruses conferred significant protection against HMPV challenge and induced immunogenicity against a heterologous strain. In conclusion, our results show that the viral genetic backbone should be considered in the design of live-attenuated HMPV vaccines, and that a SH-deleted virus based on the A1/C-85473 HMPV strain could be a promising LAV candidate as it is both attenuated and protective in mice while being efficiently produced in a cell-based system.
Collapse
Affiliation(s)
- Julia Dubois
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Andrés Pizzorno
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Marie-Hélène Cavanagh
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Blandine Padey
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Claire Nicolas de Lamballerie
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Olus Uyar
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Marie-Christine Venable
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Aurélien Traversier
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Thomas Julien
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Sophie Lavigne
- Quebec Heart and Lung Institute, Laval University, Quebec City, QC G1V 4G5, Canada.
| | - Christian Couture
- Quebec Heart and Lung Institute, Laval University, Quebec City, QC G1V 4G5, Canada.
| | - Bruno Lina
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- Laboratoire de Virologie, Centre National de Référence des virus Influenza, Institut des Agents Infectieux, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France.
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| | - Olivier Terrier
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine-VirPath team, Centre International de Recherche en Infectiologie (CIRI), INSERM U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
- VirNext, Faculté de Médecine RTH Laennec, Université Claude Bernard Lyon 1, Université de Lyon, 69008 Lyon, France.
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, QC G1V 4G2, Canada.
| |
Collapse
|
14
|
Chen S, He H, Yang H, Tan B, Liu E, Zhao X, Zhao Y. The role of lipid rafts in cell entry of human metapneumovirus. J Med Virol 2019; 91:949-957. [PMID: 30698826 PMCID: PMC7166723 DOI: 10.1002/jmv.25414] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 11/28/2018] [Accepted: 01/03/2019] [Indexed: 11/13/2022]
Abstract
Human metapneumovirus (hMPV) is a crucial pathogen in children. A cell entry is the first step for infection. Our previous study indicated that there was an endocytosis pathway for hMPV cell entry. Lipid raft is a specific structure at the cell surface and it has been demonstrated to play an important role in endocytosis process of many viruses. In this study, we investigated whether and how lipid raft can take part in the hMPV entry. The confocal microscope was used to detect colocalization of hMPV and lipid raft marker. We demonstrated that colocalizations were increased along with the viral infection and hMPV particles transferred to the perinuclear region with lipid raft. When specific lipid raft inhibitors: methyl‐β cyclodextrin and nystatin were used, hMPV cell entry was inhibited and viral titer decreased dramatically. With the replenishment of exogenous cholesterol, hMPV recovered quickly. These data suggest that lipid raft plays an important role in hMPV endocytosis and maybe one of the pathways for hMPV cell entry. This study showed lipid raft, as the specific structure at cell surface, plays an important role in hMPV endocytosis and maybe the one of the pathways for hMPV cell entry. This study gave a better understanding of the mechanisms of hMPV cell entry and a new way to prevent and treat its infection.
Collapse
Affiliation(s)
- Suhua Chen
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hao He
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Hui Yang
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Tan
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Enmei Liu
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xiaodong Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Yao Zhao
- Chongqing Key Laboratory of Child Infection and Immunity, Ministry of Education Key Laboratory of Child Development and Disorders, International Science and Technology Cooperation Base of Child Development and Critical Disorders, Pediatric Research Institute, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
15
|
Stradal TEB, Schelhaas M. Actin dynamics in host-pathogen interaction. FEBS Lett 2018; 592:3658-3669. [PMID: 29935019 PMCID: PMC6282728 DOI: 10.1002/1873-3468.13173] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 06/19/2018] [Accepted: 06/19/2018] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton and Rho GTPase signaling to actin assembly are prime targets of bacterial and viral pathogens, simply because actin is involved in all motile and membrane remodeling processes, such as phagocytosis, macropinocytosis, endocytosis, exocytosis, vesicular trafficking and membrane fusion events, motility, and last but not least, autophagy. This article aims at providing an overview of the most prominent pathogen‐induced or ‐hijacked actin structures, and an outlook on how future research might uncover additional, equally sophisticated interactions.
Collapse
Affiliation(s)
- Theresia E B Stradal
- Department of Cell Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Mario Schelhaas
- Institute of Cellular Virology, ZMBE, University of Münster, Germany
| |
Collapse
|
16
|
Dubois J, Cavanagh MH, Terrier O, Hamelin MÈ, Lina B, Shi R, Rosa-Calatrava M, Boivin G. Mutations in the fusion protein heptad repeat domains of human metapneumovirus impact on the formation of syncytia. J Gen Virol 2017; 98:1174-1180. [PMID: 28613142 DOI: 10.1099/jgv.0.000796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of respiratory tract infections. The mechanism by which its fusion (F) protein is responsible for variable cytopathic effects in vitro remains unknown. We aligned the F sequences of the poorly fusogenic B2/CAN98-75 strain and the hyperfusogenic A1/C-85473 strain and identified divergent residues located in the two functional heptad repeats domains (HRA and HRB). We generated recombinant viruses by inserting the mutations N135T-G139N-T143K-K166E-E167D in HRA and/or K479R-N482S in HRB, corresponding to swapped sequences from C-85473, into CAN98-75 background and investigated their impact on in vitro phenotype and fusogenicity. We demonstrated that the five HRA mutations enhanced the fusogenicity of the recombinant rCAN98-75 virus, almost restoring the phenotype of the wild-type rC-85473 strain, whereas HRB substitutions alone had no significant effect on cell-cell fusion. Altogether, our results support the importance of the HRA domain for an HMPV-triggered fusion mechanism and identify key residues that modulate syncytium formation.
Collapse
Affiliation(s)
- Julia Dubois
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada.,Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie-Hélène Cavanagh
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Olivier Terrier
- Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| | - Bruno Lina
- Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Hospices Civils de Lyon, Centre National de Référence Virus Influenzae France Sud, Laboratoire de Virologie, Groupement Hospitalier Nord, F-69317, Lyon, France
| | - Rong Shi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Pavillon Charles-Eugene-Marchand, Québec, Canada.,Département de Biochimie, de Microbiologie et de Bio-informatique, PROTEO, Université Laval, Québec, Canada
| | - Manuel Rosa-Calatrava
- Laboratoire de Virologie et Pathologie Humaine - VirPath Team, Centre International de Recherche en Infectiologie CIRI, Inserm U1111, CNRS UMR5308, ENS Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, Canada
| |
Collapse
|
17
|
Thammawat S, Sadlon TA, Adamson P, Gordon DL. Effect of sialidase fusion protein (DAS 181) on human metapneumovirus infection of Hep-2 cells. Antivir Chem Chemother 2016; 24:161-165. [PMID: 27620888 DOI: 10.1177/2040206616665971] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
METHODS Hep-2 cells were preincubated with DAS181 or control DAS185 (a mutated sialidase) prior to inoculation with human metapneumovirus strains. Infectivity was assessed by a cell-based ELISA quantitating human metapneumovirus matrix protein. The effect of DAS181 on binding of recombinant G attachment protein was also determined. RESULTS DAS181 blocked infection of human metapneumovirus strains A2, B1, and B2 at low concentrations. No effect of DAS185 was observed. Binding of MPV G protein to Hep-2 cells was also markedly inhibited by preincubation of cells with DAS181. CONCLUSIONS These results suggest that human metapneumovirus may utilize sialic acids as an entry cofactor. DAS181 may thus represent a new therapeutic agent useful for the treatment of human metapneumovirus.
Collapse
Affiliation(s)
- Sutthiwan Thammawat
- 1 Department of Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide, Australia.,2 Faculty of Medicine, Mahasarakham University, Mahasarakham, Thailand
| | - Tania A Sadlon
- 1 Department of Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide, Australia
| | - Penelope Adamson
- 1 Department of Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide, Australia
| | - David L Gordon
- 1 Department of Microbiology and Infectious Diseases, Flinders University, Bedford Park, Adelaide, Australia
| |
Collapse
|
18
|
DC-SIGN and L-SIGN Are Attachment Factors That Promote Infection of Target Cells by Human Metapneumovirus in the Presence or Absence of Cellular Glycosaminoglycans. J Virol 2016; 90:7848-63. [PMID: 27334579 DOI: 10.1128/jvi.00537-16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/15/2016] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED It is well established that glycosaminoglycans (GAGs) function as attachment factors for human metapneumovirus (HMPV), concentrating virions at the cell surface to promote interaction with other receptors for virus entry and infection. There is increasing evidence to suggest that multiple receptors may exhibit the capacity to promote infectious entry of HMPV into host cells; however, definitive identification of specific transmembrane receptors for HMPV attachment and entry is complicated by the widespread expression of cell surface GAGs. pgsA745 Chinese hamster ovary (CHO) cells are deficient in the expression of cell surface GAGs and resistant to HMPV infection. Here, we demonstrate that the expression of the Ca(2+)-dependent C-type lectin receptor (CLR) DC-SIGN (CD209L) or L-SIGN (CD209L) rendered pgsA745 cells permissive to HMPV infection. Unlike infection of parental CHO cells, HMPV infection of pgsA745 cells expressing DC-SIGN or L-SIGN was dynamin dependent and inhibited by mannan but not by pretreatment with bacterial heparinase. Parental CHO cells expressing DC-SIGN/L-SIGN also showed enhanced susceptibility to dynamin-dependent HMPV infection, confirming that CLRs can promote HMPV infection in the presence or absence of GAGs. Comparison of pgsA745 cells expressing wild-type and endocytosis-defective mutants of DC-SIGN/L-SIGN indicated that the endocytic function of CLRs was not essential but could contribute to HMPV infection of GAG-deficient cells. Together, these studies confirm a role for CLRs as attachment factors and entry receptors for HMPV infection. Moreover, they define an experimental system that can be exploited to identify transmembrane receptors and entry pathways where permissivity to HMPV infection can be rescued following the expression of a single cell surface receptor. IMPORTANCE On the surface of CHO cells, glycosaminoglycans (GAGs) function as the major attachment factor for human metapneumoviruses (HMPV), promoting dynamin-independent infection. Consistent with this, GAG-deficient pgaA745 CHO cells are resistant to HMPV. However, expression of DC-SIGN or L-SIGN rendered pgsA745 cells permissive to dynamin-dependent infection by HMPV, although the endocytic function of DC-SIGN/L-SIGN was not essential for, but could contribute to, enhanced infection. These studies provide direct evidence implicating DC-SIGN/L-SIGN as an alternate attachment factor for HMPV attachment, promoting dynamin-dependent infection via other unknown receptors in the absence of GAGs. Moreover, we describe a unique experimental system for the assessment of putative attachment and entry receptors for HMPV.
Collapse
|
19
|
Abstract
The paper briefly characterizes human metapneumovirus, a newly discovered pathogen of acute respiratory infections, and gives brief clinical, virological, and pathological data concerning a fatal outcome of a 51-year-old obese woman without severe background pathology. Metapneumovirus infection has been verified by real-time PCR. Morphological examination revealed the signs of subtotal diffuse alveolar damage, ciliary epithelial cell overgrowths, and binucleated macrophages. The changes revealed in the lungs are similar to those as previously described in paramyxovirus infections, but are accompanied by severe nonspecific changes that have been recently observed in swine influenza. Those in the brain meninges, kidneys, pancreas, and intestine may be suggestive of the generalization of the infection. It has been proposed that the properties of the virus may vary.
Collapse
Affiliation(s)
- V V Varyasin
- City Clinical Hospital Fifty-Two, Moscow Healthcare Department
| | - A V Zinserling
- Saint Petersburg Research Institute of Phthisiopulmonology, Medical Faculty, Saint Petersburg University, Saint Petersburg, Russia
| |
Collapse
|
20
|
Abstract
Human metapneumovirus (HMPV) has been described as an important etiologic agent of upper and lower respiratory tract infections, especially in young children and the elderly. Most of school-aged children might be introduced to HMPVs, and exacerbation with other viral or bacterial super-infection is common. However, our understanding of the molecular evolution of HMPVs remains limited. To address the comprehensive evolutionary dynamics of HMPVs, we report a genome-wide analysis of the eight genes (N, P, M, F, M2, SH, G, and L) using 103 complete genome sequences. Phylogenetic reconstruction revealed that the eight genes from one HMPV strain grouped into the same genetic group among the five distinct lineages (A1, A2a, A2b, B1, and B2). A few exceptions of phylogenetic incongruence might suggest past recombination events, and we detected possible recombination breakpoints in the F, SH, and G coding regions. The five genetic lineages of HMPVs shared quite remote common ancestors ranging more than 220 to 470 years of age with the most recent origins for the A2b sublineage. Purifying selection was common, but most protein genes except the F and M2-2 coding regions also appeared to experience episodic diversifying selection. Taken together, these suggest that the five lineages of HMPVs maintain their individual evolutionary dynamics and that recombination and selection forces might work on shaping the genetic diversity of HMPVs.
Collapse
|
21
|
Respiratory Syncytial Virus Attachment Glycoprotein Contribution to Infection Depends on the Specific Fusion Protein. J Virol 2015; 90:245-53. [PMID: 26468535 DOI: 10.1128/jvi.02140-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/04/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Human respiratory syncytial virus (RSV) is an important pathogen causing acute lower respiratory tract disease in children. The RSV attachment glycoprotein (G) is not required for infection, as G-null RSV replicates efficiently in several cell lines. Our laboratory previously reported that the viral fusion (F) protein is a determinant of strain-dependent pathogenesis. Here, we hypothesized that virus dependence on G is determined by the strain specificity of F. We generated recombinant viruses expressing G and F, or null for G, from the laboratory A2 strain (Katushka RSV-A2GA2F [kRSV-A2GA2F] and kRSV-GstopA2F) or the clinical isolate A2001/2-20 (kRSV-2-20G2-20F and kRSV-Gstop2-20F). We quantified the virus cell binding, entry kinetics, infectivity, and growth kinetics of these four recombinant viruses in vitro. RSV expressing the 2-20 G protein exhibited the greatest binding activity. Compared to the parental viruses expressing G and F, removal of 2-20 G had more deleterious effects on binding, entry, infectivity, and growth than removal of A2 G. Overall, RSV expressing 2-20 F had a high dependence on G for binding, entry, and infection. IMPORTANCE RSV is the leading cause of childhood acute respiratory disease requiring hospitalization. As with other paramyxoviruses, two major RSV surface viral glycoproteins, the G attachment protein and the F fusion protein, mediate virus binding and subsequent membrane fusion, respectively. Previous work on the RSV A2 prototypical strain demonstrated that the G protein is functionally dispensable for in vitro replication. This is in contrast to other paramyxoviruses that require attachment protein function as a prerequisite for fusion. We reevaluated this requirement for RSV using G and F proteins from clinical isolate 2-20. Compared to the laboratory A2 strain, the G protein from 2-20 had greater contributions to virus binding, entry, infectivity, and in vitro growth kinetics. Thus, the clinical isolate 2-20 F protein function depended more on its G protein, suggesting that RSV has a higher dependence on G than previously thought.
Collapse
|
22
|
Aerts L, Cavanagh MH, Dubois J, Carbonneau J, Rhéaume C, Lavigne S, Couture C, Hamelin MÈ, Boivin G. Effect of in vitro syncytium formation on the severity of human metapneumovirus disease in a murine model. PLoS One 2015; 10:e0120283. [PMID: 25803584 PMCID: PMC4372586 DOI: 10.1371/journal.pone.0120283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/05/2015] [Indexed: 12/17/2022] Open
Abstract
Human metapneumovirus (HMPV) is an important cause of acute respiratory tract infections (ARTI) in children, elderly individuals and immunocompromised patients. In vitro, different HMPV strains can induce variable cytopathic effects ranging from large multinucleated syncytia to focal cell rounding. In this study, we investigated the impact of different in vitro phenotypes of two HMPV strains on viral replication and disease severity in a BALB/c mouse model. We first generated two recombinant GFP-expressing HMPV viruses: C-85473, a syncytium-inducing strain (rC-85473) belonging to the A1 subtype and CAN98-75, a focal cell rounding-inducing strain (rCAN98-75) of the B2 subtype. We subsequently exchanged the F genes of both strains to create the chimeric viruses rC-85473_F and rCAN98-75_F. We demonstrated that the F protein was the sole protein responsible for the syncytium phenotype and that viruses carrying a syncytium-inducing F protein replicated to significantly higher titers in vitro. In vivo, however, the virulence and replicative capacity of the different HMPV strains did not appear to be solely dependent on the F gene but also on the viral background, with the strains containing the C-85473 background inducing more weight loss as well as increased lung viral titers, pro-inflammatory cytokines and inflammation than strains containing the CAN98-75 background. In conclusion, the F protein is the main determinant of syncytium formation and replication kinetics in vitro, although it is not the only factor implicated in HMPV disease severity in mice.
Collapse
Affiliation(s)
- Laetitia Aerts
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Marie-Hélène Cavanagh
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Julia Dubois
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Julie Carbonneau
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Chantal Rhéaume
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Sophie Lavigne
- Anatomopathologie et cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Université Laval, Quebec City, QC, Canada
| | - Christian Couture
- Anatomopathologie et cytologie, Institut Universitaire de Cardiologie et de Pneumologie de Québec and Université Laval, Quebec City, QC, Canada
| | - Marie-Ève Hamelin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
| | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Quebec, Canada
- * E-mail:
| |
Collapse
|
23
|
Molecular analysis of human metapneumovirus detected in patients with lower respiratory tract infection in upper egypt. Int J Microbiol 2014; 2014:290793. [PMID: 24669221 PMCID: PMC3941176 DOI: 10.1155/2014/290793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 11/10/2013] [Accepted: 11/25/2013] [Indexed: 11/18/2022] Open
Abstract
Introduction. Since 2001, when Human metapneumovirus (HMPV) was isolated in the Netherlands, the virus has been detected in several continents. Although reports have confirmed the prevalence of HMPV worldwide, data from Egypt remain limited. HMPV plays an important role in respiratory tract infections in individuals of all ages particularly in children. This study was aimed at estimating the prevalence of HMPV in patients with community-acquired lower respiratory infection in Upper Egypt and characterizing the circulating Egyptian HMPV strains for the first time. Materials and Methods. From 2005 to 2008, respiratory samples from 520 patients were analyzed for the presence of HMPV by real-time RT-PCR. Molecular and phylogenetic analyses were performed on partial fusion gene sequences of HMPV-positive patients. Results. HMPV-positive patients were detected in 2007-2008. The overall infection rate was 4%, while 57% of the patients were children. Sequence analysis demonstrated circulation of subgroup B viruses with predominance of lineage B2. Nucleotide sequence identity within lineage B1 was 98.8%–99.7% and higher than that in lineage B2 (94.3%–100%). Three new amino acid substitutions (T223N, R229K, and D280N) of lineage B2 were observed. Conclusion. HMPV is a major viral pathogen in the Egyptian population especially in children. During 2007-2008, predominantly HMPV B2 circulated in Upper Egypt.
Collapse
|
24
|
Genetic diversity and molecular evolution of the major human metapneumovirus surface glycoproteins over a decade. J Clin Virol 2013; 58:541-7. [DOI: 10.1016/j.jcv.2013.08.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 08/19/2013] [Accepted: 08/26/2013] [Indexed: 11/24/2022]
|