1
|
Altendorf T, Mohrlüder J, Willbold D. TSAT: Efficient evaluation software for NGS data of phage/mirror-image phage display selections. BIOPHYSICAL REPORTS 2024; 4:100166. [PMID: 38909902 PMCID: PMC11269273 DOI: 10.1016/j.bpr.2024.100166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/31/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Phage display and mirror-image phage display are commonly used techniques for the identification of binders that are specific to predefined targets. Recent studies demonstrated the effectiveness of next-generation sequencing (NGS) by increasing the amount of information extracted from selections. This allows for a better analysis and increases the possibility to select effective binders. A potential downside to NGS analysis of phage display selections is the increased workload that is needed to analyze the obtained information. Here, we report on the development of TSAT (target-specific analysis tool), software for user-friendly and efficient analysis of peptide sequence data from NGS of phage display selections.
Collapse
Affiliation(s)
- Tim Altendorf
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Jeannine Mohrlüder
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, Jülich, Germany.
| | - Dieter Willbold
- Institut für Biologische Informationsprozesse, IBI-7, Forschungszentrum Jülich, Jülich, Germany; Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
2
|
Wu S, Sheng L, Kou G, Tian R, Ye Y, Wang W, Sun J, Ji J, Shao J, Zhang Y, Sun X. Double phage displayed peptides co-targeting-based biosensor with signal enhancement activity for colorimetric detection of Staphylococcus aureus. Biosens Bioelectron 2024; 249:116005. [PMID: 38199079 DOI: 10.1016/j.bios.2024.116005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/12/2024]
Abstract
The development of simple, fast, sensitive, and specific strategies for the detection of foodborne pathogenic bacteria is crucial for ensuring food safety and promoting human health. Currently, detection methods for Staphylococcus aureus still suffer from issues such as low specificity and low sensitivity. To address this problem, we proposed a sensitivity enhancement strategy based on double phage-displayed peptides (PDPs) co-targeting. Firstly, we screened two PDPs and analyzed their binding mechanisms through fluorescent localization, pull-down assay, and molecular docking. The two PDPs target S. aureus by binding to specific proteins on its outer membrane. Based on this phenomenon, a convenient and sensitive double PDPs colorimetric biosensor was developed. Double thiol-modified phage-displayed peptides (PDP-SH) enhance the aggregation of gold nanoparticles (AuNPs), whereas the specific interaction between the double PDPs and bacteria inhibits the aggregation of AuNPs, resulting in an increased visible color change before and after the addition of bacteria. This one-step colorimetric approach displayed a high sensitivity of 2.35 CFU/mL and a wide detection range from 10-2 × 108 CFU/mL. The combination with smartphone-based image analysis improved the portability of this method. This strategy achieves the straightforward, highly sensitive and portable detection of pathogenic bacteria.
Collapse
Affiliation(s)
- Shang Wu
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Lina Sheng
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Guocheng Kou
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Run Tian
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Weiya Wang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China
| | - Jingdong Shao
- Comprehensive Technology Center of Zhangjiagang Customs, Zhangjiagang, Jiangsu, 215600, China
| | - Yinzhi Zhang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, 214122, China; Yixing Institute of Food and Biotechnology Co., Ltd, Yixing, 214200, China.
| |
Collapse
|
3
|
Kosznik-Kwaśnicka K, Topka G, Mantej J, Grabowski Ł, Necel A, Węgrzyn G, Węgrzyn A. Propagation, Purification, and Characterization of Bacteriophages for Phage Therapy. Methods Mol Biol 2024; 2738:357-400. [PMID: 37966610 DOI: 10.1007/978-1-0716-3549-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Phage therapy is an alternative approach to combat bacterial infections. In this approach, bacteriophages are used as antimicrobial agents due to their properties to infect specific bacterial cells, to propagate inside their hosts, and to lyse host cell to release progeny phages. However, to introduce bacteriophages to clinical or veterinary practice, it is necessary to construct a large library of precisely characterized phages. Therefore, in this chapter, methods for propagation, purification, and microbiological characterization of bacteriophages are presented in the light of their potential use in phage therapy. Isolation of newly discovered bacteriophages from different habitats is also described as it is a preliminary assessment of their efficacy in combating bacterial biofilms and in the treatment of bacterial infections in a simple insect model-Galleria mellonella.
Collapse
Affiliation(s)
| | | | | | - Łukasz Grabowski
- Laboratory of Phage Therapy, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Gdansk, Poland
| | - Agnieszka Necel
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Alicja Węgrzyn
- Phage Therapy Laboratory, University Center for Applied and Interdisciplinary Research, University of Gdansk, Gdansk, Poland.
| |
Collapse
|
4
|
Lima MIS, Corrêa MBC, Moraes ECDS, Oliveira JDDD, de Souza Santos P, de Souza AG, Goulart IMB, Goulart LR. HSP60 mimetic peptides from Mycobacterium leprae as new antigens for immunodiagnosis of Leprosy. AMB Express 2023; 13:120. [PMID: 37891336 PMCID: PMC10611693 DOI: 10.1186/s13568-023-01625-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
The early diagnosis of leprosy serves as an important tool to reduce the incidence of this disease in the world. Phage display (PD) technology can be used for mapping new antigens to the development of immunodiagnostic platforms. Our objective was to identify peptides that mimic Mycobacterium leprae proteins as serological markers using phage display technology. The phages were obtained in the biopanning using negative and positive serum from household contacts and leprosy patients, respectively. Then, the peptides were synthesized and validated in silico and in vitro for detection of IgG from patients and contacts. To characterize the native protein of M. leprae, scFv antibodies were selected against the synthetic peptides by PD. The scFv binding protein was obtained by immunocapture and confirmed using mass spectrometry. We selected two phase-fused peptides, MPML12 and MPML14, which mimic the HSP60 protein from M. leprae. The peptides MPML12 and MPML14 obtained 100% and 92.85% positivity in lepromatous patients. MPML12 and MPM14 detect IgG, especially in the multibacillary forms. The MPML12 and MPML14 peptides had positivity of 11.1% and 16.6% in household contacts, respectively. There was no cross-reaction in patient's samples with visceral leishmaniasis, tuberculosis and other mycobacteriosis for both peptides. Given these results and the easy obtainment of mimetic antigens, our peptides are promising markers for application in the diagnosis of leprosy, especially in endemic and hyperendemic regions.
Collapse
Affiliation(s)
- Mayara Ingrid Sousa Lima
- Laboratory of Genetics and Molecular Biology, Department of Biology, Federal University of Maranhão, São Luís, MA, Brazil.
- Postgraduate Program on Health and Environment and Postgraduate Program on Health Sciences, Federal University of Maranhão, São Luís, MA, Brazil.
| | | | | | | | - Paula de Souza Santos
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Aline Gomes de Souza
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
| | - Isabela Maria Bernardes Goulart
- National Reference Center in Sanitary Dermatology and Leprosy, School of Medicine, Clinics' Hospital, Federal University of Uberlandia, Uberlandia, MG, Brazil.
| | - Luiz Ricardo Goulart
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, MG, Brazil
- Department of Medical Microbiology and Immunology, University of California, Davis, CA, USA
| |
Collapse
|
5
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
6
|
Steinke S, Roth KDR, Englick R, Langreder N, Ballmann R, Fühner V, Zilkens KJK, Moreira GMSG, Koch A, Azzali F, Russo G, Schubert M, Bertoglio F, Heine PA, Hust M. Mapping Epitopes by Phage Display. Methods Mol Biol 2023; 2702:563-585. [PMID: 37679639 DOI: 10.1007/978-1-0716-3381-6_28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Monoclonal antibodies (mAbs) are valuable biological molecules, serving for many applications. Therefore, it is advantageous to know the interaction pattern between antibodies and their antigens. Regions on the antigen which are recognized by the antibodies are called epitopes, and the respective molecular counterpart of the epitope on the mAbs is called paratope. These epitopes can have many different compositions and/or structures. Knowing the epitope is a valuable information for the development or improvement of biological products, e.g., diagnostic assays, therapeutic mAbs, and vaccines, as well as for the elucidation of immune responses. Most of the techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Among the techniques used for epitope mapping, phage display is a versatile technology that allows the display of a library of oligopeptides or fragments from a single gene product on the phage surface, which then can interact with several antibodies to define epitopes. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
- Stephan Steinke
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ruben Englick
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Nora Langreder
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Rico Ballmann
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Viola Fühner
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Gustavo Marçal Schmidt Garcia Moreira
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Sector for Antibody and Protein Biochemistry, Tacalyx GmbH, Berlin, Germany
| | - Allan Koch
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Innovationszentrum Niedersachsen GmbH, startup.niedersachsen, Hannover, Germany
| | - Filippo Azzali
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Giulio Russo
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Maren Schubert
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Federico Bertoglio
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
- Choose Life Biotech SA, Bellinzona, Switzerland
| | - Philip Alexander Heine
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Departments Biotechnology and Medical Biotechnology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
7
|
Jakob V, Zoller BG, Rinkes J, Wu Y, Kiefer AF, Hust M, Polten S, White AM, Harvey PJ, Durek T, Craik DJ, Siebert A, Kazmaier U, Empting M. Phage display-based discovery of cyclic peptides against the broad spectrum bacterial anti-virulence target CsrA. Eur J Med Chem 2022; 231:114148. [DOI: 10.1016/j.ejmech.2022.114148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
|
8
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
9
|
Zhang X, Zhang X, Zhong M, Zhao P, Guo C, Li Y, Wang T, Gao H. Selection of a d-Enantiomeric Peptide Specifically Binding to PHF6 for Inhibiting Tau Aggregation in Transgenic Mice. ACS Chem Neurosci 2020; 11:4240-4253. [PMID: 33284003 DOI: 10.1021/acschemneuro.0c00518] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tauopathies refer to a group of neurodegenerative disorders caused by the accumulation of insoluble hyperphosphorylated Tau protein in the brain. The inhibition and interruption of Tau aggregation are considered important strategies to ameliorate the neurodegenerative process. Previous work has shown that hexapeptide 306VQIVYK311 (PHF6) located in the repeat domain 3 of Tau protein drives Tau aggregation and itself forms a β-sheet structure similar to those of Tau-oligomers and neurofibrillary tangles (NFTs). In this study, a mirror image phage display technology was used to screen protease-resistant and low-immunogenic d-enantiomeric peptides for their capacity to inhibit Tau aggregation. Following the preparation of d-enantiomeric PHF6 fibrils and M13 phage peptide library biopanning, 7 sets of high specificity peptides were obtained. Through ELISA and competition inhibition assays, we chose a highly specific peptide p-NH with the sequence N-I-T-M-N-S-R-R-R-R-N-H. The molecular docking results showed that p-NH interacted with PHF6 fibrils mainly through van der Waals forces and hydrogen bonding and could inhibit PHF6 aggregation in a d-configuration and concentration-dependent manner. In vitro, p-NH prohibited the formation of PHF6 fibrils and was able to enter into mouse neuroblastoma N2a cells (N2a cells) to inhibit Tau hyperphosphorylation and aggregation. Intranasal administration of p-NH reduced NFTs and improved the cognitive ability of TauP301S transgenic mice. These findings represent a straightforward methodology to find therapeutic peptides with potential applications in tauopathies.
Collapse
Affiliation(s)
- Xiancheng Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - You Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| |
Collapse
|
10
|
Sozhamannan S, Hofmann ER. The State of the Art in Biodefense Related Bacterial Pathogen Detection Using Bacteriophages: How It Started and How It's Going. Viruses 2020; 12:v12121393. [PMID: 33291831 PMCID: PMC7762055 DOI: 10.3390/v12121393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/23/2020] [Accepted: 12/01/2020] [Indexed: 02/07/2023] Open
Abstract
Accurate pathogen detection and diagnosis is paramount in clinical success of treating patients. There are two general paradigms in pathogen detection: molecular and immuno-based, and phage-based detection is a third emerging paradigm due to its sensitivity and selectivity. Molecular detection methods look for genetic material specific for a given pathogen in a sample usually by polymerase chain reaction (PCR). Immuno-methods look at the pathogen components (antigens) by antibodies raised against that pathogen specific antigens. There are different variations and products based on these two paradigms with advantages and disadvantages. The third paradigm at least for bacterial pathogen detection entails bacteriophages specific for a given bacterium. Sensitivity and specificity are the two key parameters in any pathogen detection system. By their very nature, bacteriophages afford the best sensitivity for bacterial detection. Bacteria and bacteriophages form the predator-prey pair in the evolutionary arms race and has coevolved over time to acquire the exquisite specificity of the pair, in some instances at the strain level. This specificity has been exploited for diagnostic purposes of various pathogens of concern in clinical and other settings. Many recent reviews focus on phage-based detection and sensor technologies. In this review, we focus on a very special group of pathogens that are of concern in biodefense because of their potential misuse in bioterrorism and their extremely virulent nature and as such fall under the Centers for Disease and Prevention (CDC) Category A pathogen list. We describe the currently available phage methods that are based on the usual modalities of detection from culture, to molecular and immuno- and fluorescent methods. We further highlight the gaps and the needs for more modern technologies and sensors drawing from technologies existing for detection and surveillance of other pathogens of clinical relevance.
Collapse
Affiliation(s)
- Shanmuga Sozhamannan
- National Security Science & Technology, Management Advisory Services, Logistics Management Institute, 7940 Jones Branch Drive, Tysons, VA 22102, USA;
- Defense Biological Product Assurance Office (DBPAO), Joint Program Executive Office (JPEO) for Chemical, Biological, Radiological and Nuclear Defense (CBRND) Joint Project Lead (JPL) CBRND Enabling Biotechnologies (EB), 110 Thomas Johnson Drive, Suite 250, Frederick, MD 21702, USA
| | - Edward R. Hofmann
- EXCET, Inc., 6225 Brandon Ave #360, Springfield, VA 22150, USA
- US Army Combat Capabilities Development Command, Chemical Biological Center, 8908 Guard St, E3831, Edgewood, MD 21010, USA
- Correspondence:
| |
Collapse
|
11
|
Jin H, Gao X, Xiao L, He H, Cheng S, Zhang C, Hou Y, Song F, Su X, Gao Q, Lu Z, Yang R, Song X, Yang J, Duan W, Hou Y. Screening and identification of a specific peptide binding to breast cancer cells from a phage-displayed peptide library. Biotechnol Lett 2020; 43:153-164. [PMID: 33145670 DOI: 10.1007/s10529-020-03044-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Breast cancer is a popular fatal malignant tumor for women with high of rates incidence and mortality. Development of the new approaches for breast cancer targeted diagnosis and chemotherapy is emergently needed by the current clinical practice, the important first step is finding a breast cancer specifically binding molecule or fragment as early clinical indicators. RESULTS By a phage-displayed peptide library, a 12-mer peptide, CSB1 was screened out using MCF-7 cells as the target. The consequently results under immunofluorescence and laser scanning confocal microscope (LSCM) indicated that CSB1 bound MCF-7 cells and breast cancer tissues specifically and sensitively with high affinity. Bioinformatics analysis suggested that the peptide CSB1 targets the 5-Lipoxygenase-Activating Protein (FLAP), which has been implicated in breast cancer progression and prognosis. CONCLUSIONS The peptide, CSB1 is of the potential as a candidate to be used for developing the new approaches of molecular imaging detection and targeting chemotherapy of breast cancer in the future.
Collapse
Affiliation(s)
- Huijuan Jin
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Xiaojie Gao
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Li Xiao
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Huimin He
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Sinan Cheng
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Caixia Zhang
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Yifan Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Fengying Song
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Xiaorong Su
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Qian Gao
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Zheng Lu
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Ruina Yang
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Xigui Song
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China
| | - Jin Yang
- The College of Life, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Wei Duan
- School of Medicine, Deakin University, Waurn Ponds, VIC, 3216, Australia
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, 710119, Shaanxi, China.
| |
Collapse
|
12
|
Passaretti P, Khan I, Dafforn TR, Goldberg Oppenheimer P. Improvements in the production of purified M13 bacteriophage bio-nanoparticle. Sci Rep 2020; 10:18538. [PMID: 33122639 PMCID: PMC7596064 DOI: 10.1038/s41598-020-75205-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/13/2020] [Indexed: 11/17/2022] Open
Abstract
M13 bacteriophage is a well-established versatile nano-building block, which can be employed to produce novel self-assembled functional materials and devices. Sufficient production and scalability of the M13, often require a large quantity of the virus and thus, improved propagation methods characterised by high capacity and degree of purity are essential. Currently, the 'gold-standard' is represented by infecting Escherichia coli cultures, followed by precipitation with polyethylene glycol (PEG). However, this is considerably flawed by the accumulation of contaminant PEG inside the freshly produced stocks, potentially hampering the reactivity of the individual M13 filaments. Our study demonstrates the effectiveness of implementing an isoelectric precipitation procedure to reduce the residual PEG along with FT-IR spectroscopy as a rapid, convenient and effective analytic validation method to detect the presence of this contaminant in freshly prepared M13 stocks.
Collapse
Affiliation(s)
- Paolo Passaretti
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Inam Khan
- School of Metallurgy and Materials, University of Birmingham, Birmingham, B15 2TT, UK
| | - Timothy R Dafforn
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | | |
Collapse
|
13
|
Pyruvate dehydrogenase complex-enzyme 2, a new target for Listeria spp. detection identified using combined phage display technologies. Sci Rep 2020; 10:15267. [PMID: 32943681 PMCID: PMC7498459 DOI: 10.1038/s41598-020-72159-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
The genus Listeria comprises ubiquitous bacteria, commonly present in foods and food production facilities. In this study, three different phage display technologies were employed to discover targets, and to generate and characterize novel antibodies against Listeria: antibody display for biomarker discovery and antibody generation; ORFeome display for target identification; and single-gene display for epitope characterization. With this approach, pyruvate dehydrogenase complex—enzyme 2 (PDC-E2) was defined as a new detection target for Listeria, as confirmed by immunomagnetic separation-mass spectrometry (IMS-MS). Immunoblot and fluorescence microscopy showed that this protein is accessible on the bacterial cell surface of living cells. Recombinant PDC-E2 was produced in E. coli and used to generate 16 additional antibodies. The resulting set of 20 monoclonal scFv-Fc was tested in indirect ELISA against 17 Listeria and 16 non-Listeria species. Two of them provided 100% sensitivity (CI 82.35–100.0%) and specificity (CI 78.20–100.0%), confirming PDC-E2 as a suitable target for the detection of Listeria. The binding region of 18 of these antibodies was analyzed, revealing that ≈ 90% (16/18) bind to the lipoyl domains (LD) of the target. The novel target PDC-E2 and highly specific antibodies against it offer new opportunities to improve the detection of Listeria.
Collapse
|
14
|
Li C, Li J, Xu Y, Zhan Y, Li Y, Song T, Zheng J, Yang H. Application of Phage-Displayed Peptides in Tumor Imaging Diagnosis and Targeting Therapy. Int J Pept Res Ther 2020; 27:587-595. [PMID: 32901205 PMCID: PMC7471523 DOI: 10.1007/s10989-020-10108-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Phage display is an effective and powerful technique that provides a route to discovery unique peptides targeting to tumor cells. Specifically binding peptides are considered as the valuable target directing molecule fragments with potential efficiency to improve the current tumor clinic, and offer new approaches for tumor prevention, diagnosis and treatment. We focus on the recent advances in the isolation of tumor-targeting peptides by biopanning methods, with particular emphasis on molecular imaging, and pharmaceutical targeting therapy.
Collapse
Affiliation(s)
- Chunyan Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jia Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Ying Zhan
- 518 Hospital of PLA, Xi'an, 710043 Shaanxi China
| | - Yu Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Tingting Song
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Jiao Zheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| | - Hong Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Air Force Medical University, 127 West ChangLe Road, Xi'an, 710032 Shaanxi China
| |
Collapse
|
15
|
Wenzel EV, Bosnak M, Tierney R, Schubert M, Brown J, Dübel S, Efstratiou A, Sesardic D, Stickings P, Hust M. Human antibodies neutralizing diphtheria toxin in vitro and in vivo. Sci Rep 2020; 10:571. [PMID: 31953428 PMCID: PMC6969050 DOI: 10.1038/s41598-019-57103-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/17/2019] [Indexed: 12/19/2022] Open
Abstract
Diphtheria is an infectious disease caused by Corynebacterium diphtheriae. The bacterium primarily infects the throat and upper airways and the produced diphtheria toxin (DT), which binds to the elongation factor 2 and blocks protein synthesis, can spread through the bloodstream and affect organs, such as the heart and kidneys. For more than 125 years, the therapy against diphtheria has been based on polyclonal horse sera directed against DT (diphtheria antitoxin; DAT). Animal sera have many disadvantages including serum sickness, batch-to-batch variation in quality and the use of animals for production. In this work, 400 human recombinant antibodies were generated against DT from two different phage display panning strategies using a human immune library. A panning in microtiter plates resulted in 22 unique in vitro neutralizing antibodies and a panning in solution combined with a functional neutralization screening resulted in 268 in vitro neutralizing antibodies. 61 unique antibodies were further characterized as scFv-Fc with 35 produced as fully human IgG1. The best in vitro neutralizing antibody showed an estimated relative potency of 454 IU/mg and minimal effective dose 50% (MED50%) of 3.0 pM at a constant amount of DT (4x minimal cytopathic dose) in the IgG format. The targeted domains of the 35 antibodies were analyzed by immunoblot and by epitope mapping using phage display. All three DT domains (enzymatic domain, translocation domain and receptor binding domain) are targets for neutralizing antibodies. When toxin neutralization assays were performed at higher toxin dose levels, the neutralizing capacity of individual antibodies was markedly reduced but this was largely compensated for by using two or more antibodies in combination, resulting in a potency of 79.4 IU/mg in the in vivo intradermal challenge assay. These recombinant antibody combinations are candidates for further clinical and regulatory development to replace equine DAT.
Collapse
Affiliation(s)
- Esther Veronika Wenzel
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Margarita Bosnak
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Robert Tierney
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Maren Schubert
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Jeffrey Brown
- PETA International Science Consortium Ltd, London, United Kingdom
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany
| | - Androulla Efstratiou
- WHO Collaborating Centre for Diphtheria and Streptococcal Infections, London, UK
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Paul Stickings
- National Institute for Biological Standards and Control (NIBSC), Division of Bacteriology, Potters Bar, United Kingdom
| | - Michael Hust
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Braunschweig, Germany.
| |
Collapse
|
16
|
Ramli SR, Moreira GMSG, Zantow J, Goris MGA, Nguyen VK, Novoselova N, Pessler F, Hust M. Discovery of Leptospira spp. seroreactive peptides using ORFeome phage display. PLoS Negl Trop Dis 2019; 13:e0007131. [PMID: 30677033 PMCID: PMC6363232 DOI: 10.1371/journal.pntd.0007131] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 02/05/2019] [Accepted: 01/05/2019] [Indexed: 12/12/2022] Open
Abstract
Background Leptospirosis is the most common zoonotic disease worldwide. The diagnostic performance of a serological test for human leptospirosis is mainly influenced by the antigen used in the test assay. An ideal serological test should cover all serovars of pathogenic leptospires with high sensitivity and specificity and use reagents that are relatively inexpensive to produce and can be used in tropical climates. Peptide-based tests fulfil at least the latter two requirements, and ORFeome phage display has been successfully used to identify immunogenic peptides from other pathogens. Methodology/Principal findings Two ORFeome phage display libraries of the entire Leptospira spp. genomes from five local strains isolated in Malaysia and seven WHO reference strains were constructed. Subsequently, 18 unique Leptospira peptides were identified in a screen using a pool of sera from patients with acute leptospirosis. Five of these were validated by titration ELISA using different pools of patient or control sera. The diagnostic performance of these five peptides was then assessed against 16 individual sera from patients with acute leptospirosis and 16 healthy donors and was compared to that of two recombinant reference proteins from L. interrogans. This analysis revealed two peptides (SIR16-D1 and SIR16-H1) from the local isolates with good accuracy for the detection of acute leptospirosis (area under the ROC curve: 0.86 and 0.78, respectively; sensitivity: 0.88 and 0.94; specificity: 0.81 and 0.69), which was close to that of the reference proteins LipL32 and Loa22 (area under the ROC curve: 0.91 and 0.80; sensitivity: 0.94 and 0.81; specificity: 0.75 and 0.75). Conclusions/Significance This analysis lends further support for using ORFeome phage display to identify pathogen-associated immunogenic peptides, and it suggests that this technique holds promise for the development of peptide-based diagnostics for leptospirosis and, possibly, of vaccines against this pathogen. Leptospirosis is an infectious disease that is transmitted from animals to humans. It is associated with a broad range of clinical presentations, and diagnostic tests with high diagnostic accuracy are required in order to enable accurate diagnosis. Leptospirosis is diagnosed by detecting DNA of the pathogen or antibodies against it in patients’ blood; the latter are preferred in resource limited regions, and diagnostics based on peptides (small fragments of proteins) are advantageous because they are inexpensive to produce and more stable in hot climates than full-length proteins. We used a technique called open reading frame phage display to identify peptides from Leptospira spp. that could be used to detect antibodies against them in human blood. In this method, the pathogen’s genome is fragmented, the corresponding peptides displayed on the surfaces of phages (viruses that infect bacteria), and the peptides that bind most strongly to the patients’ antibodies are then selected by screening. Using this method, we identified 2 leptospiral peptides that accurately identified antibodies against Leptospira spp. in sera from patients with leptospirosis. These results are encouraging because they demonstrate that ORFeome phage display may be a powerful tool to develop better diagnostics for leptospirosis for use in less developed areas.
Collapse
Affiliation(s)
- Siti Roszilawati Ramli
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
- Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Gustavo M. S. G. Moreira
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
| | - Jonas Zantow
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
| | - Marga G. A. Goris
- OIE and National Collaborating Centre for Reference and Research on Leptospirosis Academic Medical Center, Department of Medical Microbiology, University of Amsterdam, Amsterdam, the Netherlands
| | - Van Kinh Nguyen
- Research Group Biomarkers for Infectious Diseases, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
| | - Natalia Novoselova
- Research Group Biomarkers for Infectious Diseases, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
- United Institute of Informatics Problems, National Academy of Sciences of Belarus, Minsk, Belarus
| | - Frank Pessler
- Research Group Biomarkers for Infectious Diseases, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Research Group Biomarkers for Infectious Diseases, TWINCORE Center for Experimental and Clinical Infection Research, Hannover, Germany
- * E-mail: (FP); (MH)
| | - Michael Hust
- Institute for Biochemistry, Biotechnology and Bioinformatics, Braunschweig University of Technology, Braunschweig, Germany
- * E-mail: (FP); (MH)
| |
Collapse
|
17
|
Fühner V, Heine PA, Zilkens KJC, Meier D, Roth KDR, Moreira GMSG, Hust M, Russo G. Epitope Mapping via Phage Display from Single-Gene Libraries. Methods Mol Biol 2019; 1904:353-375. [PMID: 30539480 DOI: 10.1007/978-1-4939-8958-4_17] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Antibodies are widely used in a large variety of research applications, for diagnostics and therapy of numerous diseases, primarily cancer and autoimmune diseases. Antibodies are binding specifically to target structures (antigens). The antigen-binding properties are not only dependent on the antibody sequence, but also on the discrete antigen region recognized by the antibody (epitope). Knowing the epitope is valuable information for the improvement of diagnostic assays or therapeutic antibodies, as well as to understand the immune response of a vaccine. While huge progress has been made in the pipelines for the generation and functional characterization of antibodies, the available technologies for epitope mapping are still lacking effectiveness in terms of time and effort. Also, no technique available offers the absolute guarantee of succeeding. Thus, research to develop and improve epitope mapping techniques is still an active field. Phage display from random peptide libraries or single-gene libraries are currently among the most exploited methods for epitope mapping. The first is based on the generation of mimotopes and it is fastened to the need of high-throughput sequencing and complex bioinformatic analysis. The second provides original epitope sequences without requiring complex analysis or expensive techniques, but depends on further investigation to define the functional amino acids within the epitope. In this book chapter, we describe how to perform epitope mapping by antigen fragment phage display from single-gene antigen libraries and how to construct these types of libraries. Thus, we also provide figures and analysis to demonstrate the actual potential of this technique and to prove the necessity of certain procedural steps.
Collapse
Affiliation(s)
- Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Doris Meier
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kristian Daniel Ralph Roth
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| | - Giulio Russo
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
18
|
Dai P, Zhu Y, You X, Deng X, Zhu C, Chen L, Li L, Luo D, Zeng Y. Screening and Identification of the Binding Peptides of Mycoplasma genitalium Protein of Adhesion. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9783-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Irani N, Basardeh E, Samiee F, Fateh A, Shooraj F, Rahimi A, Shahcheraghi F, Vaziri F, Masoumi M, Pazhouhandeh M, Siadat SD, Kazemi-Lomedasht F, Jamnani FR. The inhibitory effect of the combination of two new peptides on biofilm formation by Acinetobacter baumannii. Microb Pathog 2018; 121:310-317. [PMID: 29859290 DOI: 10.1016/j.micpath.2018.05.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/27/2018] [Accepted: 05/29/2018] [Indexed: 12/13/2022]
Abstract
The emergence of extensively drug-resistant (XDR) Acinetobacter baumannii strains and the limited number of efficacious antibiotics demonstrate an urgent need to develop novel agents to treat infections caused by this dangerous pathogen. To find antimicrobial peptides against A. baumannii growing either in planktonic or in biofilm mode, biopanning was carried out with a peptide library on five XDR A. baumannii strains grown in the medium containing human blood (blood biopanning) and biofilms formed by these strains (biofilm biopanning). Two groups of peptides were identified, among which two peptides N10 (from blood biopanning) and NB2 (from biofilm biopanning) were selected and synthesized for more assessments. The selected peptides showed significant binding to A. baumannii rather than to the human cell line Caco-2. Both peptides were effective against A. baumannii and showed antibacterial activities (minimum inhibitory concentration (MIC) 500 μg/ml). In the biofilm inhibition assay, NB2 reduced biofilm more efficiently (75%) than N10 (50%). The combination of the two peptides could function better than each peptide alone to prevent biofilm formation by A. baumannii. Supplementation of conventional therapy with a mixture of peptides targeting A. baumannii or using peptides to deliver antibiotics specifically to the site of infection may be promising to control A. baumannii-related diseases.
Collapse
Affiliation(s)
- Nazanin Irani
- Department of Microbiology, Islamic Azad University, Tehran North Branch, Tehran, Iran; Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Eilnaz Basardeh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Samiee
- Department of Microbial Biotechnology, Islamic Azad University, Pharmaceutical Sciences Branch, Tehran, Iran
| | - Abolfazl Fateh
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fahimeh Shooraj
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Ayoub Rahimi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fereshteh Shahcheraghi
- Department of Bacteriology, Microbiology Research Center, Pasteur Institute of Iran, Iran
| | - Farzam Vaziri
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Morteza Masoumi
- Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | - Seyed Davar Siadat
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom & Biotherapeutics Molecules Lab, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Rahimi Jamnani
- Human Antibody Lab, Innovation Center, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
20
|
Abstract
Among the molecules of the immune system, antibodies, particularly monoclonal antibodies (mAbs), have been shown to be interesting for many biological applications. Due to their ability to recognize only a unique part of their target, mAbs are usually very specific. These targets can have many different compositions, but the most common ones are proteins or peptides that are usually from outside the host, although self-proteins can also be targeted in autoimmune diseases, or in some types of cancer. The parts of a mAb that interact with its target compose the paratope, while the recognized parts of the target compose the epitope. Knowing the epitope is valuable for the improvement of a biological product, e.g., a diagnostic assay, a therapeutic mAb, or a vaccine, as well as for the elucidation of immune responses. The current techniques for epitope mapping rely on the presentation of the target, or parts of it, in a way that it can interact with a certain mAb. Even though there are several techniques available, each has its pros and cons. Thus, the choice for one of them is usually dependent on the preference and availability of the researcher, opening possibility for improvement, or development of alternative techniques. Phage display, for example, is a versatile technology, which allows the presentation of many different oligopeptides that can be tested against different antibodies, fitting the need for an epitope mapping approach. In this chapter, a protocol for the construction of a single-target oligopeptide phage library, as well as for the panning procedure for epitope mapping using phage display is given.
Collapse
Affiliation(s)
| | - Viola Fühner
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - Michael Hust
- Abteilung Biotechnologie, Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
21
|
Li C, Gao N, Xue Q, Ma N, Hu Y, Zhang J, Chen B, Hou Y. Screening and identification of a specific peptide binding to cervical cancer cells from a phage-displayed peptide library. Biotechnol Lett 2017. [DOI: 10.1007/s10529-017-2381-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
22
|
Kuzmicheva GA, Belyavskaya VA. Peptide phage display in biotechnology and biomedicine. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2017. [DOI: 10.1134/s1990750817010061] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Kuzmicheva GA, Belyavskaya VA. [Peptide phage display in biotechnology and biomedicine]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2017; 62:481-495. [PMID: 27797323 DOI: 10.18097/pbmc20166205481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To date peptide phage display is one of the most common combinatorial methods used for identifying specific peptide ligands. Phage display peptide libraries containing billions different clones successfully used for selection of ligands with high affinity and selectivity toward wide range of targets including individual proteins, bacteria, viruses, spores, different kind of cancer cells and variety of nonorganic targets (metals, alloys, semiconductors etc.) Success of using filamentous phage in phage display technologies relays on the robustness of phage particles and a possibility to genetically modify its DNA to construct new phage variants with novel properties. In this review we are discussing characteristics of the most known non-commercial peptide phage display libraries of different formats (landscape libraries in particular) and their successful applications in several fields of biotechnology and biomedicine: discovery of peptides with diagnostic values against different pathogens, discovery and using of peptides recognizing cancer cells, trends in using of phage display technologies in human interactome studies, application of phage display technologies in construction of novel nano materials.
Collapse
Affiliation(s)
- G A Kuzmicheva
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia; XBiotech USA, Austin, TX, USA
| | - V A Belyavskaya
- Research Center of Virology and Biotechnology Vector, Koltsovo, Novosibirsk region, Russia
| |
Collapse
|
24
|
Zantow J, Just S, Lagkouvardos I, Kisling S, Dübel S, Lepage P, Clavel T, Hust M. Mining gut microbiome oligopeptides by functional metaproteome display. Sci Rep 2016; 6:34337. [PMID: 27703179 PMCID: PMC5050496 DOI: 10.1038/srep34337] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/12/2016] [Indexed: 12/25/2022] Open
Abstract
Pathogen infections, autoimmune diseases, and chronic inflammatory disorders are associated with systemic antibody responses from the host immune system. Disease-specific antibodies can be important serum biomarkers, but the identification of antigens associated with specific immune reactions is challenging, in particular if complex communities of microorganisms are involved in the disease progression. Despite promising new diagnostic opportunities, the discovery of these serological markers becomes more difficult with increasing complexity of microbial communities. In the present work, we used a metagenomic M13 phage display approach to select immunogenic oligopeptides from the gut microbiome of transgenic mice suffering from chronic ileitis. We constructed three individual metaproteome phage display libraries with a library size of approximately 107 clones each. Using serum antibodies, we selected and validated three oligopeptides that induced specific antibody responses in the mouse model. This proof-of-concept study provides the first successful application of functional metaproteome display for the study of protein-protein interactions and the discovery of potential disease biomarkers.
Collapse
Affiliation(s)
- Jonas Zantow
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Sarah Just
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Ilias Lagkouvardos
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Sigrid Kisling
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Stefan Dübel
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| | - Patricia Lepage
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thomas Clavel
- Technische Universität München, ZIEL Institute for Food and Health, Freising, Germany
| | - Michael Hust
- Technische Universität Braunschweig, Institute of Biochemistry, Biotechnology and Bioinformatics - Department for Biotechnology, Germany
| |
Collapse
|
25
|
Fructose 1,6-Bisphosphate Aldolase, a Novel Immunogenic Surface Protein on Listeria Species. PLoS One 2016; 11:e0160544. [PMID: 27489951 PMCID: PMC4973958 DOI: 10.1371/journal.pone.0160544] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous food-borne pathogen, and its presence in food or production facilities highlights the importance of surveillance. Increased understanding of the surface exposed antigens on Listeria would provide potential diagnostic and therapeutic targets. In the present work, using mass spectrometry and genetic cloning, we show that fructose-1,6-bisphosphate aldolase (FBA) class II in Listeria species is the antigen target of the previously described mAb-3F8. Western and dot blot assays confirmed that the mAb-3F8 could distinguish all tested Listeria species from close-related bacteria. Localization studies indicated that FBA is present in every fraction of Listeria cells, including supernatant and the cell wall, setting Listeria spp. as one of the few bacteria described to have this protein on their cell surface. Epitope mapping using ORFeome display and a peptide membrane revealed a 14-amino acid peptide as the potential mAb-3F8 epitope. The target epitope in FBA allowed distinguishing Listeria spp. from closely-related bacteria, and was identified as part of the active site in the dimeric enzyme. However, its function in cell surface seems not to be host cell adhesion-related. Western and dot blot assays further demonstrated that mAb-3F8 together with anti-InlA mAb-2D12 could differentiate pathogenic from non-pathogenic Listeria isolated from artificially contaminated cheese. In summary, we report FBA as a novel immunogenic surface target useful for the detection of Listeria genus.
Collapse
|
26
|
Connor DO, Zantow J, Hust M, Bier FF, von Nickisch-Rosenegk M. Identification of Novel Immunogenic Proteins of Neisseria gonorrhoeae by Phage Display. PLoS One 2016; 11:e0148986. [PMID: 26859666 PMCID: PMC4747489 DOI: 10.1371/journal.pone.0148986] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/26/2016] [Indexed: 12/14/2022] Open
Abstract
Neisseria gonorrhoeae is one of the most prevalent sexually transmitted diseases worldwide with more than 100 million new infections per year. A lack of intense research over the last decades and increasing resistances to the recommended antibiotics call for a better understanding of gonococcal infection, fast diagnostics and therapeutic measures against N. gonorrhoeae. Therefore, the aim of this work was to identify novel immunogenic proteins as a first step to advance those unresolved problems. For the identification of immunogenic proteins, pHORF oligopeptide phage display libraries of the entire N. gonorrhoeae genome were constructed. Several immunogenic oligopeptides were identified using polyclonal rabbit antibodies against N. gonorrhoeae. Corresponding full-length proteins of the identified oligopeptides were expressed and their immunogenic character was verified by ELISA. The immunogenic character of six proteins was identified for the first time. Additional 13 proteins were verified as immunogenic proteins in N. gonorrhoeae.
Collapse
Affiliation(s)
- Daniel O. Connor
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Jonas Zantow
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Michael Hust
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Frank F. Bier
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Department of Biosystem Integration and Automation, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Markus von Nickisch-Rosenegk
- Department of Bioanalytics and Biosensorics, Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
27
|
Wine Y, Horton AP, Ippolito GC, Georgiou G. Serology in the 21st century: the molecular-level analysis of the serum antibody repertoire. Curr Opin Immunol 2015; 35:89-97. [PMID: 26172290 DOI: 10.1016/j.coi.2015.06.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/22/2015] [Accepted: 06/22/2015] [Indexed: 12/11/2022]
Abstract
The ensemble of antibodies found in serum and secretions represents the key adaptive component of B-cell mediated humoral immunity. The antibody repertoire is shaped by the historical record of exposure to exogenous factors such as pathogens and vaccines, as well as by endogenous host-intrinsic factors such as genetics, self-antigens, and age. Thanks to very recent technology advancements it is now becoming possible to identify and quantify the individual antibodies comprising the serological repertoire. In parallel, the advent of high throughput methods for antigen and immunosignature discovery opens up unprecedented opportunities to transform our understanding of numerous key questions in adaptive humoral immunity, including the nature and dynamics of serological memory, the role of polyspecific antibodies in health and disease and how protective responses to infections or vaccine challenge arise. Additionally, these technologies also hold great promise for therapeutic antibody and biomarker discovery in a variety of settings.
Collapse
Affiliation(s)
- Yariv Wine
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Andrew P Horton
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, USA; Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; Institute for Cell and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
28
|
Becker M, Felsberger A, Frenzel A, Shattuck WMC, Dyer M, Kügler J, Zantow J, Mather TN, Hust M. Application of M13 phage display for identifying immunogenic proteins from tick (Ixodes scapularis) saliva. BMC Biotechnol 2015; 15:43. [PMID: 26024663 PMCID: PMC4449557 DOI: 10.1186/s12896-015-0167-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Abstract
Background Ticks act as vectors for a large number of different pathogens, perhaps most notably Borrelia burgdorferi, the causative agent of Lyme disease. The most prominent tick vector in the United States is the blacklegged tick, Ixodes scapularis. Tick bites are of special public health concern since there are no vaccines available against most tick-transmitted pathogens. Based on the observation that certain non-natural host animals such as guinea pigs or humans can develop adaptive immune responses to tick bites, anti-tick vaccination is a potential approach to tackle health risks associated with tick bites. Results The aim of this study was to use an oligopeptide phage display strategy to identify immunogenic salivary gland proteins from I. scapularis that are recognized by human immune sera. Oligopeptide libraries were generated from salivary gland mRNA of 18 h fed nymphal I. scapularis. Eight immunogenic oligopeptides were selected using human immune sera. Three selected immunogenic oligopeptides were cloned and produced as recombinant proteins. The immunogenic character of an identified metalloprotease (MP1) was validated with human sera. This enzyme has been described previously and was hypothesized as immunogenic which was confirmed in this study. Interestingly, it also has close homologs in other Ixodes species. Conclusion An immunogenic protein of I. scapularis was identified by oligopeptide phage display. MP1 is a potential candidate for vaccine development.
Collapse
Affiliation(s)
- Martin Becker
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA. .,Present Address: Max-Planck-Institute for Immunobiology and Epigenetics, Stuebeweg 51, 79108, Freiburg, Germany.
| | - André Felsberger
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany. .,Present Address: YUMAB GmbH, Rebenring 33, 38106, Braunschweig, Germany.
| | - André Frenzel
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Wendy M C Shattuck
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Megan Dyer
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Jonas Kügler
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Jonas Zantow
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| | - Thomas N Mather
- University of Rhode Island, URI Center for Vector-Borne Disease, 231 Woodward Hall, 9 East Alumni Avenue, Suite 7, 02881, Kingston, RI, USA.
| | - Michael Hust
- Institut für Biochemie, Biotechnologie und Bioinformatik, Technische Universität Braunschweig, Spielmannstr.7, 38106, Braunschweig, Germany.
| |
Collapse
|
29
|
Interaction analysis through proteomic phage display. BIOMED RESEARCH INTERNATIONAL 2014; 2014:176172. [PMID: 25295249 PMCID: PMC4177731 DOI: 10.1155/2014/176172] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/11/2014] [Accepted: 08/19/2014] [Indexed: 11/29/2022]
Abstract
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance.
Collapse
|
30
|
Peptide-based technologies to alter adenoviral vector tropism: ways and means for systemic treatment of cancer. Viruses 2014; 6:1540-63. [PMID: 24699364 PMCID: PMC4014709 DOI: 10.3390/v6041540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/15/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022] Open
Abstract
Due to the fundamental progress in elucidating the molecular mechanisms of human diseases and the arrival of the post-genomic era, increasing numbers of therapeutic genes and cellular targets are available for gene therapy. Meanwhile, the most important challenge is to develop gene delivery vectors with high efficiency through target cell selectivity, in particular under in situ conditions. The most widely used vector system to transduce cells is based on adenovirus (Ad). Recent endeavors in the development of selective Ad vectors that target cells or tissues of interest and spare the alteration of all others have focused on the modification of the virus broad natural tropism. A popular way of Ad targeting is achieved by directing the vector towards distinct cellular receptors. Redirecting can be accomplished by linking custom-made peptides with specific affinity to cellular surface proteins via genetic integration, chemical coupling or bridging with dual-specific adapter molecules. Ideally, targeted vectors are incapable of entering cells via their native receptors. Such altered vectors offer new opportunities to delineate functional genomics in a natural environment and may enable efficient systemic therapeutic approaches. This review provides a summary of current state-of-the-art techniques to specifically target adenovirus-based gene delivery vectors.
Collapse
|