1
|
Loffredo MR, Nencioni L, Mangoni ML, Casciaro B. Antimicrobial peptides for novel antiviral strategies in the current post-COVID-19 pandemic. J Pept Sci 2024; 30:e3534. [PMID: 37501572 DOI: 10.1002/psc.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023]
Abstract
The recent pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has highlighted how urgent and necessary the discovery of new antiviral compounds is for novel therapeutic approaches. Among the various classes of molecules with antiviral activity, antimicrobial peptides (AMPs) of innate immunity are among the most promising ones, mainly due to their different mechanisms of action against viruses and additional biological properties. In this review, the main physicochemical characteristics of AMPs are described, with particular interest toward peptides derived from amphibian skin. Living in aquatic and terrestrial environments, amphibians are one of the richest sources of AMPs with different primary and secondary structures. Besides describing the various antiviral activities of these peptides and the underlying mechanism, this review aims at emphasizing the high potential of these small molecules for the development of new antiviral agents that likely reduce the selection of resistant strains.
Collapse
Affiliation(s)
- Maria Rosa Loffredo
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Lucia Nencioni
- Department of Public Health and Infectious Diseases, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Maria Luisa Mangoni
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Bruno Casciaro
- Department of Biochemical Sciences "A. Rossi Fanelli", Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
2
|
Lee YCJ, Shirkey JD, Park J, Bisht K, Cowan AJ. An Overview of Antiviral Peptides and Rational Biodesign Considerations. BIODESIGN RESEARCH 2022; 2022:9898241. [PMID: 37850133 PMCID: PMC10521750 DOI: 10.34133/2022/9898241] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/04/2022] [Indexed: 10/19/2023] Open
Abstract
Viral diseases have contributed significantly to worldwide morbidity and mortality throughout history. Despite the existence of therapeutic treatments for many viral infections, antiviral resistance and the threat posed by novel viruses highlight the need for an increased number of effective therapeutics. In addition to small molecule drugs and biologics, antimicrobial peptides (AMPs) represent an emerging class of potential antiviral therapeutics. While AMPs have traditionally been regarded in the context of their antibacterial activities, many AMPs are now known to be antiviral. These antiviral peptides (AVPs) have been shown to target and perturb viral membrane envelopes and inhibit various stages of the viral life cycle, from preattachment inhibition through viral release from infected host cells. Rational design of AMPs has also proven effective in identifying highly active and specific peptides and can aid in the discovery of lead peptides with high therapeutic selectivity. In this review, we highlight AVPs with strong antiviral activity largely curated from a publicly available AMP database. We then compile the sequences present in our AVP database to generate structural predictions of generic AVP motifs. Finally, we cover the rational design approaches available for AVPs taking into account approaches currently used for the rational design of AMPs.
Collapse
Affiliation(s)
- Ying-Chiang J. Lee
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jaden D. Shirkey
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Karishma Bisht
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Alexis J. Cowan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
3
|
Huang J, Liu X, Sun Y, Huang C, Wang A, Xu J, Zhou H, Li L, Zhou R. Porcine β-defensin 2 confers enhanced resistance to swine flu infection in transgenic pigs and alleviates swine influenza virus-induced apoptosis possibly through interacting with host SLC25A4. Antiviral Res 2022; 201:105292. [PMID: 35341807 DOI: 10.1016/j.antiviral.2022.105292] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 03/12/2022] [Accepted: 03/14/2022] [Indexed: 11/29/2022]
Abstract
Swine influenza virus (SIV) not only brings about great economic losses on the global pig industry, it also poses a significant threat to the public health for its interspecies transmission capacity. Porcine β-defensin 2 (PBD-2) is a host defense peptide and our previous study has shown that PBD-2 inhibits proliferation of enveloped pseudorabies virus both in vitro and in transgenic (TG) mice. The aim of this study is to investigate the possible anti-SIV ability of PBD-2 in a TG pig model created in our previous study. The in-contact challenge trial demonstrated that overexpression of PBD-2 in pigs could efficiently alleviate SIV-associated clinical signs. The SIV titers quantified by EID50 in lung tissues of infected TG pigs were significantly lower than that of wild-type littermates. In vitro, the cell viability assay revealed that PBD-2 mainly interfered with viral entry and post-infection stages. It was further confirmed that PBD-2 could enter porcine tracheal epithelial cells. The proteins interacting with PBD-2 inside host cells were identified with immunoprecipitation and the pathways involved were analyzed. Results showed that PBD-2 could interact with pro-apoptotic solute carrier family 25 member 4 (SLC25A4), also known as adenine nucleotide translocase 1, and thereby inhibited SIV-induced cell apoptosis. The molecular docking analysis suggested that PBD-2 interacted with porcine SLC25A4 mainly through strong hydrogen binding, with the predicted binding affinity being -13.23 kcal/mol. Altogether, these indicate that PBD-2 protects pigs against SIV infection, which may result from its role as a SLC25A4 blocker to alleviate cell apoptosis, providing a novel therapeutic and prophylactic strategy of using PBD-2 to combat SIV.
Collapse
Affiliation(s)
- Jing Huang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China; Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, 55108, USA
| | - Xiao Liu
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China
| | - Yufan Sun
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China
| | - Chao Huang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China
| | - Antian Wang
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China
| | - Jiajia Xu
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China
| | - Hongbo Zhou
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China
| | - Lu Li
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China.
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China; International Research Center for Animal Disease, Ministry of Science and Technology of China, Wuhan, 430070, China.
| |
Collapse
|
4
|
Ashaolu TJ, Nawaz A, Walayat N, Khalifa I. Potential "biopeptidal" therapeutics for severe respiratory syndrome coronaviruses: a review of antiviral peptides, viral mechanisms, and prospective needs. Appl Microbiol Biotechnol 2021; 105:3457-3470. [PMID: 33876282 PMCID: PMC8054851 DOI: 10.1007/s00253-021-11267-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 01/10/2023]
Abstract
Although great advances have been made on large-scale manufacturing of vaccines and antiviral-based drugs, viruses persist as the major cause of human diseases nowadays. The recent pandemic of coronavirus disease-2019 (COVID-19) mounts a lot of stress on the healthcare sector and the scientific society to search continuously for novel components with antiviral possibility. Herein, we narrated the different tactics of using biopeptides as antiviral molecules that could be used as an interesting alternative to treat COVID-19 patients. The number of peptides with antiviral effects is still low, but such peptides already displayed huge potentials to become pharmaceutically obtainable as antiviral medications. Studies showed that animal venoms, mammals, plant, and artificial sources are the main sources of antiviral peptides, when bioinformatics tools are used. This review spotlights bioactive peptides with antiviral activities against human viruses, especially the coronaviruses such as severe acute respiratory syndrome (SARS) virus, Middle East respiratory syndrome (MERS) virus, and severe acute respiratory syndrome coronavirus 2 (SARS-COV-2 or SARS-nCOV19). We also showed the data about well-recognized peptides that are still under investigations, while presenting the most potent ones that may become medications for clinical use.
Collapse
Affiliation(s)
- Tolulope Joshua Ashaolu
- Institute of Research and Development, Duy Tan University, Da Nang, 550000 Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang, 550000 Vietnam
| | - Asad Nawaz
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, People’s Republic of China
| | - Noman Walayat
- Department of Food Science and Engineering, College of Ocean, Zhejiang University of Technology, Hangzhou, People’s Republic of China
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Banha University, 13736, Moshtohor, Cairo, Egypt
| |
Collapse
|
5
|
Nuclear-Targeting Delivery of CRISPRa System for Upregulation of β-Defensin against Virus Infection by Dexamethasone and Phenylalanine Dual-Modified Dendrimer. ADVANCES IN POLYMER TECHNOLOGY 2020. [DOI: 10.1155/2020/6582825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dual-modified dendrimer containing dexamethasone (DET) and phenylalanine (Phe) was prepared to deliver plasmid DNA encoding dCas9 and single-guide RNA (sgRNA) for specific upregulation of β-defensin. DET and Phe moieties synergistically enhanced the transfection efficiency and reduced cytotoxicity of dendrimers. Combination of three sgRNAs targeting β-defensin gene demonstrated higher activation efficacy of β-defensin than any single sgRNA and combinations of any two sgRNAs, showing an efficient inhibition of virus infection and replication. The titer of vesicular stomatitis virus (VSV) in the cells treated with dCas9-sgRNA targeting β-defensin was reduced by about 100-fold compared to that of cells treated with dCas9-scramble sgRNA (dCas9-scr sgRNA). In vivo experiments demonstrated that the DET- and Phe-modified dendrimer effectively delivered plasmid DNA encoding dCas9 protein into the airway epithelium, inducing β-defensin expression. Delivery of the CRISPR activation system by a dendrimer modified with DET and Phe was a promising approach against viral disease.
Collapse
|
6
|
Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311-332. [DOI: 10.1038/s41573-019-0058-8] [Citation(s) in RCA: 425] [Impact Index Per Article: 106.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/18/2022]
|
7
|
New therapeutic targets for the prevention of infectious acute exacerbations of COPD: role of epithelial adhesion molecules and inflammatory pathways. Clin Sci (Lond) 2019; 133:1663-1703. [PMID: 31346069 DOI: 10.1042/cs20181009] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic respiratory diseases are among the leading causes of mortality worldwide, with the major contributor, chronic obstructive pulmonary disease (COPD) accounting for approximately 3 million deaths annually. Frequent acute exacerbations (AEs) of COPD (AECOPD) drive clinical and functional decline in COPD and are associated with accelerated loss of lung function, increased mortality, decreased health-related quality of life and significant economic costs. Infections with a small subgroup of pathogens precipitate the majority of AEs and consequently constitute a significant comorbidity in COPD. However, current pharmacological interventions are ineffective in preventing infectious exacerbations and their treatment is compromised by the rapid development of antibiotic resistance. Thus, alternative preventative therapies need to be considered. Pathogen adherence to the pulmonary epithelium through host receptors is the prerequisite step for invasion and subsequent infection of surrounding structures. Thus, disruption of bacterial-host cell interactions with receptor antagonists or modulation of the ensuing inflammatory profile present attractive avenues for therapeutic development. This review explores key mediators of pathogen-host interactions that may offer new therapeutic targets with the potential to prevent viral/bacterial-mediated AECOPD. There are several conceptual and methodological hurdles hampering the development of new therapies that require further research and resolution.
Collapse
|
8
|
Identification, Recombinant Expression, and Characterization of LHG2, a Novel Antimicrobial Peptide of Lactobacillus casei HZ1. Molecules 2018; 23:molecules23092246. [PMID: 30177656 PMCID: PMC6225214 DOI: 10.3390/molecules23092246] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/24/2018] [Accepted: 08/29/2018] [Indexed: 02/06/2023] Open
Abstract
L. casei HZ1 was identified from Chinese traditional fermented milk, and angiotensin converting enzyme inhibitory peptide was separated from its culture in our previous work. Here, LGH2 was a novel AMP, identified from the genome of L. casei HZ1. Altogether, roughly 52.76% of LGH2 was α-helical, with the remainder in β-strand and random coil in 50% TFE solution tested by CD. The peptide was also an amphipathic and cationic molecule, which was composed of 20 amino acid residues. The similarity of the amino acid sequence between LGH2 and Temporin-RN3 was highest. Then, the peptide successfully expressed in E. coli Rossetta (DE3) pLysS using the SUMO fusion expression system and purified by chromatography technologies. The molecular weight of the peptide was 2448 Da determined by MALDI-TOF MS. Antimicrobial tests showed that the peptide has strong activities against G+ bacteria, special for S. aureus (MIC = 4 μM). The toxicity assay showed that the peptide exhibits a low hemolytic activity against sheep red blood cells. The antimicrobial mechanisms of LGH2 against pathogens were further investigated by dye leakage, CLSM, SEM, and FCM assays. We found that LGH2 can bind to the cell membrane, and destroy its integrity. These significant results indicate that LGH2 has great potential to treat the infections caused by pathogenic bacteria such as S. aureus, and it provides a new template to improve antimicrobial peptides targeting antibiotic-resistant pathogenic bacteria.
Collapse
|
9
|
Park MS, Kim JI, Lee I, Park S, Bae JY, Park MS. Towards the Application of Human Defensins as Antivirals. Biomol Ther (Seoul) 2018; 26:242-254. [PMID: 29310427 PMCID: PMC5933891 DOI: 10.4062/biomolther.2017.172] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/12/2017] [Indexed: 12/14/2022] Open
Abstract
Defensins are antimicrobial peptides that participate in the innate immunity of hosts. Humans constitutively and/or inducibly express α- and β-defensins, which are known for their antiviral and antibacterial activities. This review describes the application of human defensins. We discuss the extant experimental results, limited though they are, to consider the potential applicability of human defensins as antiviral agents. Given their antiviral effects, we propose that basic research be conducted on human defensins that focuses on RNA viruses, such as human immunodeficiency virus (HIV), influenza A virus (IAV), respiratory syncytial virus (RSV), and dengue virus (DENV), which are considered serious human pathogens but have posed huge challenges for vaccine development for different reasons. Concerning the prophylactic and therapeutic applications of defensins, we then discuss the applicability of human defensins as antivirals that has been demonstrated in reports using animal models. Finally, we discuss the potential adjuvant-like activity of human defensins and propose an exploration of the ‘defensin vaccine’ concept to prime the body with a controlled supply of human defensins. In sum, we suggest a conceptual framework to achieve the practical application of human defensins to combat viral infections.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Ilseob Lee
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Sehee Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Use of quercetin in animal feed: effects on the P-gp expression and pharmacokinetics of orally administrated enrofloxacin in chicken. Sci Rep 2018. [PMID: 29535328 PMCID: PMC5849680 DOI: 10.1038/s41598-018-22354-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Modulation of P-glycoprotein (P-gp, encoded by Mdr1) by xenobiotics plays central role in pharmacokinetics of various drugs. Quercetin has a potential to modulate P-gp in rodents, however, its effects on P-gp modulation in chicken are still unclear. Herein, study reports role of quercetin in modulation of P-gp expression and subsequent effects on the pharmacokinetics of enrofloxacin in broilers. Results show that P-gp expression was increased in a dose-dependent manner following exposure to quercetin in Caco-2 cells and tissues of chicken. Absorption rate constant and apparent permeability coefficient of rhodamine 123 were decreased, reflecting efflux function of P-gp in chicken intestine increased by quercetin. Quercetin altered pharmacokinetic of enrofloxacin by decreasing area under curve, peak concentration, and time to reach peak concentration and by increasing clearance rate. Molecular docking shows quercetin can form favorable interactions with binding pocket of chicken xenobiotic receptor (CXR). Results provide convincing evidence that quercetin induced P-gp expression in tissues by possible interaction with CXR, and consequently reducing bioavailability of orally administered enrofloxacin through restricting its intestinal absorption and liver/kidney clearance in broilers. The results can be further extended to guide reasonable use of quercetin to avoid drug-feed interaction occurred with co-administered enrofloxacin or other similar antimicrobials.
Collapse
|
11
|
Abstract
Discovering new therapeutics for human viral diseases is important for combatting emerging infectious viruses and omnipresent circulating viruses as well as those that can become resistant to the drugs we currently have available. The innate host defense peptide (HDP) repertoire present in animals is a wealth of potential antimicrobial agents that could be mined to meet these needs. While much of the body of research regarding HDPs is in the context of bacteria, there is increasing evidence that they can be an effective source for antivirals. Peptides can be identified in a number of ways, including eco-conservation-minded approaches. Those shown to have antiviral properties can be modified to exhibit desired properties as the relationship between structure and function is elucidated and then developed into therapeutics for human use. This review looks at the discovery and therapeutic potential of HDPs for human viral infections.
Collapse
|
12
|
Kalenik BM, Góra-Sochacka A, Sirko A. Β-defensins - Underestimated peptides in influenza combat. Virus Res 2018; 247:10-14. [PMID: 29421304 DOI: 10.1016/j.virusres.2018.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 02/07/2023]
Abstract
Defensins are a family of host defense peptides present in vertebrates, invertebrates and plants. They display broad antimicrobial activity and immunomodulatory functions. Herein, the natural anti-influenzal role of β-defensins, as well as their potential usage as anti-influenza vaccine adjuvants and therapeutic agents, is reviewed. This article summarizes previously published information on β-defensin modes of action, expression changes after influenza infection and vaccination, biotechnological usage and possible boosting of their production by dietary supplementation.
Collapse
Affiliation(s)
- Barbara Małgorzata Kalenik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Anna Góra-Sochacka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Agnieszka Sirko
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106 Warsaw, Poland.
| |
Collapse
|
13
|
Sun Y, Guo T, Guo D, Guo L, Chen L, Zhang Y, Wang L. Establishment and characterization of an MDCK cell line stably-transfected with chicken Abcb1 encoding P-glycoprotein. Res Vet Sci 2016; 106:37-44. [PMID: 27234533 DOI: 10.1016/j.rvsc.2016.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 01/27/2023]
Abstract
Chicken P-glycoprotein (chP-gp), encoded by Abcb1, determines the bioavailability because of its effect on pharmacokinetics of various drugs. However, comprehensive studies on chP-gp are still limited. In this study, the chicken full-length cDNA was first successfully cloned and then stably expressed in MDCK cell line. The open reading frame of chicken Abcb1 consists of 3864 nucleotides, encoding for a 1287-amino acid protein. Sequence alignments analysis showed that chicken P-gp had high identities with the homologues of turkey (95%), human (72%), pig (72%), rat (71%) and cattle (68%). The efflux ratio of rhodamine123 (Rho123, a human P-gp substrate) in chAbcb1 transfected MDCK cells was significantly higher than that in the wild type MDCK cell (6.24 vs 1.64, P<0.05), suggesting a good transporting function of chicken P-gp overexpressed in the transfected cell. Importantly, MDCK-chAbcb1 cells, unlike Caco-2 cells, exhibited biphasic saturation kinetics in transporting Rho123. In conclusion, an MDCK cell line stably expressing chAbcb1 was successfully established, which could provide a new cell model to screen its substrates and inhibitors and study the drug-drug interaction medicated via chicken P-gp.
Collapse
Affiliation(s)
- Yong Sun
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Tingting Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Dawei Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Li Guo
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Li Chen
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yu Zhang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Liping Wang
- Laboratory of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|