1
|
A Recombinant Genotype I Japanese Encephalitis Virus Expressing a Gaussia Luciferase Gene for Antiviral Drug Screening Assay and Neutralizing Antibodies Detection. Int J Mol Sci 2022; 23:ijms232415548. [PMID: 36555192 PMCID: PMC9778660 DOI: 10.3390/ijms232415548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Japanese encephalitis virus (JEV) is the major cause of viral encephalitis in humans throughout Asia. In the past twenty years, the emergence of the genotype I (GI) JEV as the dominant genotype in Asian countries has raised a significant threat to public health security. However, no clinically approved drug is available for the specific treatment of JEV infection, and the commercial vaccines derived from the genotype III JEV strains merely provided partial protection against the GI JEV. Thus, an easy-to-perform platform in high-throughput is urgently needed for the antiviral drug screening and assessment of neutralizing antibodies specific against the GI JEV. In this study, we established a reverse genetics system for the GI JEV strain (YZ-1) using a homologous recombination strategy. Using this reverse genetic system, a gaussia luciferase (Gluc) expression cassette was inserted into the JEV genome to generate a reporter virus (rGI-Gluc). The reporter virus exhibited similar growth kinetics to the parental virus and remained genetically stable for at least ten passages in vitro. Of note, the bioluminescence signal strength of Gluc in the culture supernatants was well correlated with the viral progenies determined by viral titration. Taking advantage of this reporter virus, we established Gluc readout-based assays for antiviral drug screening and neutralizing antibody detection against the GI JEV. These Gluc readout-based assays exhibited comparable performance to the assays using an actual virus and are less time consuming and are applicable for a high-throughput format. Taken together, we generated a GI JEV reporter virus expressing a Gluc gene that could be a valuable tool for an antiviral drug screening assay and neutralization assay.
Collapse
|
2
|
Sanchez-Velazquez R, de Lorenzo G, Tandavanitj R, Setthapramote C, Bredenbeek PJ, Bozzacco L, MacDonald MR, Clark JJ, Rice CM, Patel AH, Kohl A, Varjak M. Generation of a reporter yellow fever virus for high throughput antiviral assays. Antiviral Res 2020; 183:104939. [PMID: 32980446 PMCID: PMC7649875 DOI: 10.1016/j.antiviral.2020.104939] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/30/2023]
Abstract
Yellow fever virus (YFV), a member of the Flaviviridae family, is an arthropod-borne virus that can cause severe disease in humans with a lethality rate of up to 60%. Since 2017, increases in YFV activity in areas of South America and Africa have been described. Although a vaccine is available, named strain 17D (Theiler and Smith, 1937), it is contraindicated for use in the elderly, expectant mothers, immunocompromised people, among others. To this day there is no antiviral treatment against YFV to reduce the severity of viral infection. Here, we used a circular polymerase extension reaction (CPER)-based reverse genetics approach to generate a full-length reporter virus (YFVhb) by introducing a small HiBit tag in the NS1 protein. The reporter virus replicates at a similar rate to the parental YFV in HuH-7 cells. Using YFVhb, we designed a high throughput antiviral screening luciferase-based assay to identify inhibitors that target any step of the viral replication cycle. We validated our assay by using a range of inhibitors including drugs, immune sera and neutralizing single chain variable fragments (scFv). In light of the recent upsurge in YFV and a potential spread of the virus, this assay is a further tool in the development of antiviral therapy against YFV. Bacteria-free approach to rescue yellow fever virus. Novel tagged yellow fever virus that permits quantifiable assays. Usage of the novel tagged virus for screening of antivirals and immune sera. Novel antiviral compounds against YFV were identified.
Collapse
Affiliation(s)
| | | | | | | | - Peter J Bredenbeek
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Leonia Bozzacco
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Jordan J Clark
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY, USA
| | - Arvind H Patel
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Alain Kohl
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK
| | - Margus Varjak
- MRC-University of Glasgow, Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
3
|
Yun SI, Song BH, Woolley ME, Frank JC, Julander JG, Lee YM. Development, Characterization, and Application of Two Reporter-Expressing Recombinant Zika Viruses. Viruses 2020; 12:v12050572. [PMID: 32456014 PMCID: PMC7290298 DOI: 10.3390/v12050572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/20/2022] Open
Abstract
Zika virus (ZIKV), a mosquito-borne transplacentally transmissible flavivirus, is an enveloped virus with an ~10.8 kb plus-strand RNA genome that can cause neurological disease. To facilitate the identification of potential antivirals, we developed two reporter-expressing ZIKVs, each capable of expressing an enhanced green fluorescent protein or an improved luminescent NanoLuc luciferase. First, a full-length functional ZIKV cDNA clone was engineered as a bacterial artificial chromosome, with each reporter gene under the cap-independent translational control of a cardiovirus-derived internal ribosome entry site inserted downstream of the single open reading frame of the viral genome. Two reporter-expressing ZIKVs were then generated by transfection of ZIKV-susceptible BHK-21 cells with infectious RNAs derived by in vitro run-off transcription from the respective cDNAs. As compared to the parental virus, the two reporter-expressing ZIKVs grew to lower titers with slower growth kinetics and formed smaller foci; however, they displayed a genome-wide viral protein expression profile identical to that of the parental virus, except for two previously unrecognized larger forms of the C and NS1 proteins. We then used the NanoLuc-expressing ZIKV to assess the in vitro antiviral activity of three inhibitors (T-705, NITD-008, and ribavirin). Altogether, our reporter-expressing ZIKVs represent an excellent molecular tool for the discovery of novel antivirals.
Collapse
Affiliation(s)
- Sang-Im Yun
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Byung-Hak Song
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Michael E. Woolley
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Jordan C. Frank
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
| | - Justin G. Julander
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Young-Min Lee
- Department of Animal, Dairy, and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA; (S.-I.Y.); (B.-H.S.); (M.E.W.); (J.C.F.); (J.G.J.)
- Veterinary Diagnostics and Infectious Diseases, Utah Science Technology and Research, Utah State University, Logan, UT 84341, USA
- Correspondence: ; Tel.: +1-435-797-9667
| |
Collapse
|
4
|
Kassar TC, Magalhães T, S JVJ, Carvalho AGO, Silva ANMRDA, Queiroz SRA, Bertani GR, Gil LHVG. Construction and characterization of a recombinant yellow fever virus stably expressing Gaussia luciferase. AN ACAD BRAS CIENC 2017; 89:2119-2130. [PMID: 28746549 DOI: 10.1590/0001-3765201720160196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/20/2016] [Indexed: 11/22/2022] Open
Abstract
Yellow fever is an arthropod-borne viral disease that still poses high public health concerns, despite the availability of an effective vaccine. The development of recombinant viruses is of utmost importance for several types of studies, such as those aimed to dissect virus-host interactions and to search for novel antiviral strategies. Moreover, recombinant viruses expressing reporter genes may greatly facilitate these studies. Here, we report the construction of a recombinant yellow fever virus (YFV) expressing Gaussia luciferase (GLuc) (YFV-GLuc). We show, through RT-PCR, sequencing and measurement of GLuc activity, that stability of the heterologous gene was maintained after six passages. Furthermore, a direct association between GLuc expression and viral replication was observed (r2=0.9967), indicating that measurement of GLuc activity may be used to assess viral replication in different applications. In addition, we evaluated the use of the recombinant virus in an antiviral assay with recombinant human alfa-2b interferon. A 60% inhibition of GLuc expression was observed in cells infected with YFV-GLuc and incubated with IFN alfa-2b. Previously tested on YFV inhibition by plaque assays indicated a similar fold-decrease in viral replication. These results are valuable as they show the stability of YFV-GLuc and one of several possible applications of this construct.
Collapse
Affiliation(s)
- Telissa C Kassar
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Tereza Magalhães
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - José V J S
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Amanda G O Carvalho
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Andréa N M R DA Silva
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Sabrina R A Queiroz
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| | - Giovani R Bertani
- Departamento de Bioquímica, Universidade Federal de Pernambuco/UFPE, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50670-420 Recife, PE, Brazil
| | - Laura H V G Gil
- Departamento de Virologia e Terapia Experimental, Centro de Pesquisas Aggeu Magalhães/CPqAM, Fundação Oswaldo Cruz/FIOCRUZ, Av. Professor Moraes Rego, s/n, Cidade Universitária, 50740-465 Recife, PE, Brazil
| |
Collapse
|
5
|
Teeravechyan S, Frantz PN, Wongthida P, Chailangkarn T, Jaru-Ampornpan P, Koonpaew S, Jongkaewwattana A. Deciphering the biology of porcine epidemic diarrhea virus in the era of reverse genetics. Virus Res 2016; 226:152-171. [PMID: 27212685 PMCID: PMC7114553 DOI: 10.1016/j.virusres.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/04/2016] [Accepted: 05/04/2016] [Indexed: 01/01/2023]
Abstract
Emergence of the porcine epidemic diarrhea virus (PEDV) as a global threat to the swine industry underlies the urgent need for deeper understanding of this virus. To date, we have yet to identify functions for all the major gene products, much less grasp their implications for the viral life cycle and pathogenic mechanisms. A major reason is the lack of genetic tools for studying PEDV. In this review, we discuss the reverse genetics approaches that have been successfully used to engineer infectious clones of PEDV as well as other potential and complementary methods that have yet to be applied to PEDV. The importance of proper cell culture for successful PEDV propagation and maintenance of disease phenotype are addressed in our survey of permissive cell lines. We also highlight areas of particular relevance to PEDV pathogenesis and disease that have benefited from reverse genetics studies and pressing questions that await resolution by such studies. In particular, we examine the spike protein as a determinant of viral tropism, entry and virulence, ORF3 and its association with cell culture adaptation, and the nucleocapsid protein and its potential role in modulating PEDV pathogenicity. Finally, we conclude with an exploration of how reverse genetics can help mitigate the global impact of PEDV by addressing the challenges of vaccine development.
Collapse
Affiliation(s)
- Samaporn Teeravechyan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phanramphoei Namprachan Frantz
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Phonphimon Wongthida
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Thanathom Chailangkarn
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Peera Jaru-Ampornpan
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Surapong Koonpaew
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand
| | - Anan Jongkaewwattana
- Virology and Cell Technology Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, 12120 Thailand.
| |
Collapse
|
6
|
Abstract
WNV infectious clones are valuable tools for elucidating WNV biology. Nevertheless, relatively few infectious WNV clones have been generated because their construction is hampered by the instability of flaviviral genomes. More recently, advances in cloning techniques as well as the development of several two-plasmid WNV infectious clone systems have facilitated the generation of WNV infectious clones. Here we described a protocol for recovering WNV from a two-plasmid system. In this approach, large quantities of these constructs are digested with restriction enzymes to produce complementary restriction sites at the 3' end of the upstream fragment and the 5' end of the downstream fragment. These fragments are then annealed to produce linear template for in vitro transcription to synthesize infectious RNA. The resulting RNA is transfected into cells and after several days WNV is recovered in the culture supernatant. This method can be used to generate virus from infectious clones encoding high- and low-pathogenicity strains of WNV, as well as chimeric virues.
Collapse
|
7
|
Zhang PT, Shan C, Li XD, Liu SQ, Deng CL, Ye HQ, Shang BD, Shi PY, Lv M, Shen BF, Qin CF, Zhang B. Generation of a recombinant West Nile virus stably expressing the Gaussia luciferase for neutralization assay. Virus Res 2016; 211:17-24. [DOI: 10.1016/j.virusres.2015.09.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 09/22/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
|
8
|
Poyomtip T, Hodge K, Matangkasombut P, Sakuntabhai A, Pisitkun T, Jirawatnotai S, Chimnaronk S. Development of viable TAP-tagged dengue virus for investigation of host-virus interactions in viral replication. J Gen Virol 2015; 97:646-658. [PMID: 26669909 DOI: 10.1099/jgv.0.000371] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Dengue virus (DENV) is a mosquito-borne flavivirus responsible for life-threatening dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). The viral replication machinery containing the core non-structural protein 5 (NS5) is implicated in severe dengue symptoms but molecular details remain obscure. To date, studies seeking to catalogue and characterize interaction networks between viral NS5 and host proteins have been limited to the yeast two-hybrid system, computational prediction and co-immunoprecipitation (IP) of ectopically expressed NS5. However, these traditional approaches do not reproduce a natural course of infection in which a number of DENV NS proteins colocalize and tightly associate during the replication process. Here, we demonstrate the development of a recombinant DENV that harbours a TAP tag in NS5 to study host-virus interactions in vivo. We show that our engineered DENV was infective in several human cell lines and that the tags were stable over multiple viral passages, suggesting negligible structural and functional disturbance of NS5. We further provide proof-of-concept for the use of rationally tagged virus by revealing a high confidence NS5 interaction network in human hepatic cells. Our analysis uncovered previously unrecognized hnRNP complexes and several low-abundance fatty acid metabolism genes, which have been implicated in the viral life cycle. This study sets a new standard for investigation of host-flavivirus interactions.
Collapse
Affiliation(s)
- Teera Poyomtip
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Kenneth Hodge
- Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Ponpan Matangkasombut
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Anavaj Sakuntabhai
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Functional Genetics of Infectious Diseases Unit, Institute Pasteur, Paris, France.,Centre National de la Recherche Scientifique (CNRS), URA3012, F-75015 Paris, France
| | - Trairak Pisitkun
- Systems Biology Center, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Siwanon Jirawatnotai
- Department of Pharmacology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.,Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Sarin Chimnaronk
- Systems Biology of Diseases Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.,Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Phutthamonthon, Nakhon Pathom 73170, Thailand
| |
Collapse
|
9
|
Tuo D, Shen W, Yan P, Li X, Zhou P. Rapid Construction of Stable Infectious Full-Length cDNA Clone of Papaya Leaf Distortion Mosaic Virus Using In-Fusion Cloning. Viruses 2015; 7:6241-50. [PMID: 26633465 PMCID: PMC4690859 DOI: 10.3390/v7122935] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 11/18/2015] [Accepted: 11/19/2015] [Indexed: 12/27/2022] Open
Abstract
Papaya leaf distortion mosaic virus (PLDMV) is becoming a threat to papaya and transgenic papaya resistant to the related pathogen, papaya ringspot virus (PRSV). The generation of infectious viral clones is an essential step for reverse-genetics studies of viral gene function and cross-protection. In this study, a sequence- and ligation-independent cloning system, the In-Fusion® Cloning Kit (Clontech, Mountain View, CA, USA), was used to construct intron-less or intron-containing full-length cDNA clones of the isolate PLDMV-DF, with the simultaneous scarless assembly of multiple viral and intron fragments into a plasmid vector in a single reaction. The intron-containing full-length cDNA clone of PLDMV-DF was stably propagated in Escherichia coli.In vitro intron-containing transcripts were processed and spliced into biologically active intron-less transcripts following mechanical inoculation and then initiated systemic infections in Carica papaya L. seedlings, which developed similar symptoms to those caused by the wild-type virus. However, no infectivity was detected when the plants were inoculated with RNA transcripts from the intron-less construct because the instability of the viral cDNA clone in bacterial cells caused a non-sense or deletion mutation of the genomic sequence of PLDMV-DF. To our knowledge, this is the first report of the construction of an infectious full-length cDNA clone of PLDMV and the splicing of intron-containing transcripts following mechanical inoculation. In-Fusion cloning shortens the construction time from months to days. Therefore, it is a faster, more flexible, and more efficient method than the traditional multistep restriction enzyme-mediated subcloning procedure.
Collapse
Affiliation(s)
- Decai Tuo
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Wentao Shen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Pu Yan
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xiaoying Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Peng Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
10
|
Bordat A, Houvenaghel MC, German-Retana S. Gibson assembly: an easy way to clone potyviral full-length infectious cDNA clones expressing an ectopic VPg. Virol J 2015; 12:89. [PMID: 26070311 PMCID: PMC4475333 DOI: 10.1186/s12985-015-0315-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/29/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Approaches to simplify and accelerate the construction of full-length infectious cDNA clones for plant potyviruses have been described, based on cloning strategies involving in vitro ligation or homologous recombination in yeast. In the present study, we developed a faster and more efficient in vitro recombination system using Gibson assembly (GA), to engineer a Lettuce mosaic virus (LMV) infectious clone expressing an ectopic mcherry-tagged VPg (Viral protein genome-linked) for in planta subcellular localization of the viral protein in an infection context. METHODS Three overlapping long distance PCR fragments were amplified and assembled in a single-step process based on in vitro recombination (Gibson assembly). The resulting 17.5 kbp recombinant plasmids (LMVmchVPg_Ec) were inoculated by biolistic on lettuce plants and then propagated mechanically on Nicotiana benthamiana. Confocal microscopy was used to analyze the subcellular localization of the ectopically expressed mcherry-VPg fusion protein. RESULTS The Gibson assembly allowed the cloning of the expected plasmids without any deletion. All the inoculated plants displayed symptoms characteristic of LMV infection. The majority of the mcherry fluorescent signal observed using confocal microscopy was located in the nucleus and nucleolus as expected for a potyviral VPg. CONCLUSIONS This is the first report of the use of the Gibson assembly method to construct full-length infectious cDNA clones of a potyvirus genome. This is also the first description of the ectopic expression of a tagged version of a potyviral VPg without affecting the viability of the recombinant potyvirus.
Collapse
Affiliation(s)
- Amandine Bordat
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
| | - Marie-Christine Houvenaghel
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
| | - Sylvie German-Retana
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
- Université de Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, CS 20032, 33882, Villenave d'Ornon, France.
| |
Collapse
|
11
|
Hussmann KL, Vandergaast R, Zheng K, Hoover LI, Fredericksen BL. Structural proteins of West Nile virus are a major determinant of infectious particle production and fitness in astrocytes. J Gen Virol 2014; 95:1991-2003. [PMID: 24920724 PMCID: PMC4135089 DOI: 10.1099/vir.0.065474-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The molecular basis for the increased resistance of astrocytes to a non-neuropathogenic strain of West Nile virus (WNV), WNV-MAD78, compared with the neuropathogenic strain WNV-NY remains unclear. Here, we demonstrated that the reduced susceptibility of astrocytes to WNV-MAD78 is due to a combination of both cellular activities as well as viral determinants. Analyses of the viral particle indicated that astrocyte-derived WNV-MAD78 particles were less infectious than those of WNV-NY. Additionally, inhibition of cellular furin-like proteases increased WNV-MAD78 infectious particle production in astrocytes, suggesting that high levels of furin-like protease activity within these cells acted in a cell- and strain-specific manner to inhibit WNV-MAD78 replication. Moreover, analysis of recombinant viruses indicated that the structural proteins of WNV-MAD78 were responsible for decreased particle infectivity and the corresponding reduction in infectious particle production compared with WNV-NY. Thus, the composition of the WNV virion was also a major determinant for viral fitness within astrocytes and may contribute to WNV propagation within the central nervous system. Whether the WNV-MAD78 structural genes reduce virus replication and particle infectivity through the same mechanism as the cellular furin-like protease activity or whether these two determinants function through distinct pathways remains to be determined.
Collapse
Affiliation(s)
- Katherine L Hussmann
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Rianna Vandergaast
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Kang Zheng
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Lisa I Hoover
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Brenda L Fredericksen
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD 20742, USA.,Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|