1
|
Kikuchi F, Senoo K, Arai S, Tsuchiya K, Sơn NT, Motokawa M, Ranorosoa MC, Bawm S, Lin KS, Suzuki H, Unno A, Nakata K, Harada M, Tanaka-Taya K, Morikawa S, Suzuki M, Mizutani T, Yanagihara R. Rodent-Borne Orthohantaviruses in Vietnam, Madagascar and Japan. Viruses 2021; 13:1343. [PMID: 34372549 PMCID: PMC8310111 DOI: 10.3390/v13071343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hantaviruses are harbored by multiple small mammal species in Asia, Europe, Africa, and the Americas. To ascertain the geographic distribution and virus-host relationships of rodent-borne hantaviruses in Japan, Vietnam, Myanmar, and Madagascar, RNAlater™-preserved lung tissues of 981 rodents representing 40 species, collected in 2011-2017, were analyzed for hantavirus RNA by RT-PCR. Our data showed Hantaan orthohantavirus Da Bie Shan strain in the Chinese white-bellied rat (Niviventer confucianus) in Vietnam, Thailand; orthohantavirus Anjo strain in the black rat (Rattus rattus) in Madagascar; and Puumala orthohantavirus Hokkaido strain in the grey-sided vole (Myodes rufocanus) in Japan. The Hokkaido strain of Puumala virus was also detected in the large Japanese field mouse (Apodemus speciosus) and small Japanese field mouse (Apodemus argenteus), with evidence of host-switching as determined by co-phylogeny mapping.
Collapse
Affiliation(s)
- Fuka Kikuchi
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; (F.K.); (T.M.)
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (K.T.-T.); (M.S.)
| | - Kae Senoo
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (K.T.-T.); (M.S.)
- Faculty of Science, Tokyo University of Science, Tokyo 162-8601, Japan
| | - Satoru Arai
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (K.T.-T.); (M.S.)
| | - Kimiyuki Tsuchiya
- Laboratory of Bioresources, Applied Biology Co., Ltd., Tokyo 107-0062, Japan
| | - Nguyễn Trường Sơn
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam;
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Vietnam
| | - Masaharu Motokawa
- The Kyoto University Museum, Kyoto University, Kyoto 606-8501, Japan;
| | - Marie Claudine Ranorosoa
- Mention Foresterie et Environnement, Ecole Supérieur des Sciences Agronomiques, Université d’Antananarivo, Antananarivo 101, Madagascar;
| | - Saw Bawm
- Department of Pharmacology and Parasitology, University of Veterinary Science, Nay Pyi Taw 15013, Myanmar;
| | - Kyaw San Lin
- Department of Aquaculture and Aquatic Disease, University of Veterinary Science, Nay Pyi Taw 15013, Myanmar;
| | - Hitoshi Suzuki
- Laboratory of Ecology and Genetics, Graduate School of Environmental Science, Hokkaido University, Kita-ku, Sapporo 060-0810, Japan;
| | - Akira Unno
- Local Independent Administrative Agency Hokkaido Research Organization, Bibai 079-0198, Japan; (A.U.); (K.N.)
| | - Keisuke Nakata
- Local Independent Administrative Agency Hokkaido Research Organization, Bibai 079-0198, Japan; (A.U.); (K.N.)
| | - Masashi Harada
- Laboratory Animal Center, Osaka City University, Sumiyoshi, Osaka 545-8585, Japan;
| | - Keiko Tanaka-Taya
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (K.T.-T.); (M.S.)
| | - Shigeru Morikawa
- Department of Microbiology, Faculty of Veterinary Medicine, Okayama University of Science, Imabari 794-8555, Japan;
| | - Motoi Suzuki
- Center for Surveillance, Immunization, and Epidemiologic Research, National Institute of Infectious Diseases, Tokyo 162-8640, Japan; (K.S.); (K.T.-T.); (M.S.)
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8538, Japan; (F.K.); (T.M.)
| | - Richard Yanagihara
- Department of Pediatrics, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI 96813, USA;
| |
Collapse
|
2
|
Phylogeography of Puumala orthohantavirus in Europe. Viruses 2019; 11:v11080679. [PMID: 31344894 PMCID: PMC6723369 DOI: 10.3390/v11080679] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/21/2022] Open
Abstract
Puumala virus is an RNA virus hosted by the bank vole (Myodes glareolus) and is today present in most European countries. Whilst it is generally accepted that hantaviruses have been tightly co-evolving with their hosts, Puumala virus (PUUV) evolutionary history is still controversial and so far has not been studied at the whole European level. This study attempts to reconstruct the phylogeographical spread of modern PUUV throughout Europe during the last postglacial period in the light of an upgraded dataset of complete PUUV small (S) segment sequences and by using most recent computational approaches. Taking advantage of the knowledge on the past migrations of its host, we identified at least three potential independent dispersal routes of PUUV during postglacial recolonization of Europe by the bank vole. From the Alpe-Adrian region (Balkan, Austria, and Hungary) to Western European countries (Germany, France, Belgium, and Netherland), and South Scandinavia. From the vicinity of Carpathian Mountains to the Baltic countries and to Poland, Russia, and Finland. The dissemination towards Denmark and North Scandinavia is more hypothetical and probably involved several independent streams from south and north Fennoscandia.
Collapse
|
3
|
Kim HC, Kim WK, Klein TA, Chong ST, Nunn PV, Kim JA, Lee SH, No JS, Song JW. Hantavirus surveillance and genetic diversity targeting small mammals at Camp Humphreys, a US military installation and new expansion site, Republic of Korea. PLoS One 2017; 12:e0176514. [PMID: 28448595 PMCID: PMC5407799 DOI: 10.1371/journal.pone.0176514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 04/12/2017] [Indexed: 11/19/2022] Open
Abstract
Small mammal surveillance was conducted (2008-2010, 2012) at Camp (Cp) Humphreys, a US Army installation and new expansion site, Republic of Korea (ROK), to identify hemorrhagic fever with renal syndrome health threats to US military/civilian populations during its ongoing expansion phase. Small mammals were collected using Sherman live capture traps and transported to Korea University where they were euthanized, tissues removed, and assayed to determine hantavirus IgG antibody-positive and hantavirus-positive rates by RT-PCR. A total of 2,364 small mammals were captured over 11,300 trap nights (capture rate = 20.92%). Apodemus agrarius was the most commonly collected (76.65%), with capture rates of 9.62% and 21.70% for Cp Humphreys and the expansion site, respectively. Overall, Hantaan virus (HTNV) IgG antibody-positive (Ab+) rate for A. agrarius was 2.15% (39/1,812). A total of 5.43% (10/184) Crocidura lasiura, 0.79% (2/254) Microtus fortis and 2.44% (1/41) Micromys minutus were serologically IgG Ab+ for hantaviruses. HTNV-specific RT-PCR demonstrated that 28.2% (11/39) HTNV Ab+ A. agrarius harbored the 328-nt sequence of the GC glycoprotein-encoding M segment of HTNV. Among them, the whole genome sequences of 3 HTNV strains were obtained by conventional RT-PCR and Rapid Amplification cDNA Ends PCR. Phylogenetic analyses of the HTNV strains from Cp Humphreys and the expansion site, Pyeongtaek, show a greater diversity of rodent-borne hantaviruses compared to HTNV previously identified in Gyeonggi province of the ROK. Thus, this study provides significant insights for raising HFRS threat awareness, analysis, and risk reduction strategies in southern Gyeonggi province.
Collapse
Affiliation(s)
- Heung-Chul Kim
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, United States of America
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Terry A. Klein
- MEDDAC-Korea, 65th Medical Brigade, United States of America
| | - Sung-Tae Chong
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, United States of America
| | - Peter V. Nunn
- 5th Medical Detachment, 168th Multifunctional Medical Battalion, 65th Medical Brigade, United States of America
| | - Jeong-Ah Kim
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Seung-Ho Lee
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin Sun No
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
4
|
Hantavirus infection: a global zoonotic challenge. Virol Sin 2017; 32:32-43. [PMID: 28120221 DOI: 10.1007/s12250-016-3899-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 12/13/2022] Open
Abstract
Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.
Collapse
|
5
|
Arai S, Kang HJ, Gu SH, Ohdachi SD, Cook JA, Yashina LN, Tanaka-Taya K, Abramov SA, Morikawa S, Okabe N, Oishi K, Yanagihara R. Genetic Diversity of Artybash Virus in the Laxmann's Shrew (Sorex caecutiens). Vector Borne Zoonotic Dis 2016; 16:468-75. [PMID: 27172519 DOI: 10.1089/vbz.2015.1903] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although based on very limited M and L segment sequences, Artybash virus (ARTV) was proposed previously as a unique hantavirus harbored by the Laxmann's shrew (Sorex caecutiens). To verify this conjecture, lung tissues from 68 Laxmann's shrews, captured during 2006 to 2014 in eastern Siberia, Russia, and Hokkaido, Japan, were analyzed for ARTV RNA using reverse transcription polymerase chain reaction (RT-PCR). ARTV RNA was detected in six Laxmann's shrews. Pairwise alignment and comparison of partial- and full-length S, M, and L segment sequences from these Laxmann's shrews, as well as phylogenetic analyses, using maximum likelihood and Bayesian methods indicated that ARTV was distinct from other soricine shrew-borne hantaviruses and representative hantaviruses harbored by rodents, moles, and bats. Taxonomic identity of the ARTV-infected Laxmann's shrews was confirmed by full-length cytochrome b mitochondrial DNA sequence analysis. Our data indicate that the hantavirus previously known as Amga virus (MGAV) represents genetic variants of ARTV. Thus, the previously proposed designation of ARTV/MGAV should be replaced by ARTV.
Collapse
Affiliation(s)
- Satoru Arai
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hae Ji Kang
- 2 Department of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Se Hun Gu
- 2 Department of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa , Honolulu, Hawaii
| | - Satoshi D Ohdachi
- 3 Institute of Low Temperature Science, Hokkaido University , Sapporo, Japan
| | - Joseph A Cook
- 4 Department of Biology and Museum of Southwestern Biology, University of New Mexico , Albuquerque, New Mexico
| | - Liudmila N Yashina
- 5 State Research Center of Virology and Biotechnology "Vector," Koltsovo , Russia
| | - Keiko Tanaka-Taya
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Sergey A Abramov
- 6 Institute of Systematics and Ecology of Animals , Novosibirsk, Russia
| | - Shigeru Morikawa
- 7 Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nobuhiko Okabe
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan .,8 Kawasaki City Institute for Public Health , Kanagawa, Japan
| | - Kazunori Oishi
- 1 Infectious Disease Surveillance Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Richard Yanagihara
- 2 Department of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, University of Hawaii at Manoa , Honolulu, Hawaii
| |
Collapse
|
6
|
Gu SH, Arai S, Yu HT, Lim BK, Kang HJ, Yanagihara R. Genetic variants of Cao Bang hantavirus in the Chinese mole shrew (Anourosorex squamipes) and Taiwanese mole shrew (Anourosorex yamashinai). INFECTION GENETICS AND EVOLUTION 2016; 40:113-118. [PMID: 26921799 DOI: 10.1016/j.meegid.2016.01.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/09/2016] [Accepted: 01/30/2016] [Indexed: 01/03/2023]
Abstract
To determine the genetic diversity and geographic distribution of Cao Bang virus (CBNV) and to ascertain the existence of CBNV-related hantaviruses, natural history collections of archival tissues from Chinese mole shrews (Anourosorex squamipes) and Taiwanese mole shrews (Anourosorex yamashinai), captured in Guizho Province, People's Republic of China, and in Nantou County, Taiwan, in 2006 and 1989, respectively, were analyzed for hantavirus RNA by RT-PCR. Pair-wise alignment and comparison of the S-, M- and L-segment sequences indicated CBNV in two of five Chinese mole shrews and a previously unrecognized hantavirus, named Xinyi virus (XYIV), in seven of 15 Taiwanese mole shrews. XYIV was closely related to CBNV in Vietnam and China, as well as to Lianghe virus (LHEV), recently reported as a distinct hantavirus species in Chinese mole shrews from Yunnan Province in China. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that XYIV shared a common ancestry with CBNV and LHEV, in keeping with the evolutionary relationship between Anourosorex mole shrews. Until such time that tissue culture isolates of CBNV, LHEV and XYIV can be fully analyzed, XYIV and LHEV should be regarded as genetic variants, or genotypes, of CBNV.
Collapse
Affiliation(s)
- Se Hun Gu
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Satoru Arai
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hon-Tsen Yu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Burton K Lim
- Department of Natural History, Royal Ontario Museum, Toronto, Canada
| | - Hae Ji Kang
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Richard Yanagihara
- Departments of Pediatrics and Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
7
|
Yashina LN, Abramov SA, Dupal TA, Danchinova GA, Malyshev BS, Hay J, Gu SH, Yanagihara R. Hokkaido genotype of Puumala virus in the grey red-backed vole (Myodes rufocanus) and northern red-backed vole (Myodes rutilus) in Siberia. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2015; 33:304-13. [PMID: 26003760 PMCID: PMC4871597 DOI: 10.1016/j.meegid.2015.05.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/09/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022]
Abstract
Three species of Myodes voles known to harbor hantaviruses include the bank vole (Myodes glareolus), which serves as the reservoir host of Puumala virus (PUUV), the prototype arvicolid rodent-borne hantavirus causing hemorrhagic fever with renal syndrome (HFRS) in Europe, and the grey red-backed vole (Myodes rufocanus) and royal vole (Myodes regulus) which carry two PUUV-like hantaviruses, designated Hokkaido virus (HOKV) and Muju virus (MUJV), respectively. To ascertain the hantavirus harbored by the northern red-backed vole (Myodes rutilus), we initially screened sera from 233 M. rutilus, as well as from 90 M. rufocanus and 110 M. glareolus, captured in western and eastern Siberia during June 2007 to October 2009, for anti-hantaviral antibodies. Thereafter, lung tissues from 44 seropositive voles were analyzed for hantavirus RNA by reverse transcription-polymerase chain reaction. Partial L-, M- and S-segment sequences, detected in M. rutilus and M. rufocanus, were closely related to HOKV, differing from previously published L-, M- and S-segment sequences of HOKV by 17.8-20.2%, 15.9-23.4% and 15.0-17.0% at the nucleotide level and 2.6-7.9%, 1.3-6.3% and 1.2-4.0% at the amino acid level, respectively. Alignment and comparison of hantavirus sequences from M. glareolus trapped in Tyumen Oblast showed very high sequence similarity to the Omsk lineage of PUUV. Phylogenetic analysis, using neighbor-joining, maximal likelihood and Bayesian methods, showed that HOKV strains shared a common ancestry with PUUV and exhibited geographic-specific clustering. This report provides the first molecular evidence that both M. rutilus and M. rufocanus harbor HOKV, which might represent a genetic variant of PUUV.
Collapse
Affiliation(s)
- Liudmila N Yashina
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia.
| | - Sergey A Abramov
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Tamara A Dupal
- Institute of Systematics and Ecology of Animals, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Galina A Danchinova
- Federal Budgetary Scientific Center for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Boris S Malyshev
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Russia
| | - John Hay
- School of Medicine and Biomedical Sciences, State University of New York at Buffalo, New York, NY, USA
| | - Se Hun Gu
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Richard Yanagihara
- John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.
| |
Collapse
|
8
|
Klein TA, Kim HC, Chong ST, Kim JA, Lee SY, Kim WK, Nunn PV, Song JW. Hantaan virus surveillance targeting small mammals at nightmare range, a high elevation military training area, Gyeonggi Province, Republic of Korea. PLoS One 2015; 10:e0118483. [PMID: 25874643 PMCID: PMC4398386 DOI: 10.1371/journal.pone.0118483] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/17/2015] [Indexed: 12/01/2022] Open
Abstract
Rodent-borne disease surveillance was conducted at Nightmare Range (NM-R), near the demilitarized zone in northeast Gyeonggi Province, Republic of Korea, to identify hemorrhagic fever with renal syndrome (HFRS) risks for a mountainous high-elevation (500 m) military training site. Monthly surveys were conducted from January 2008-December 2009. A total of 1,720 small mammals were captured belonging to the Orders Rodentia [Families, Sciuridae (1 species) and Muridae (7 species)] and Soricomorpha [Family, Soricidae (1species)]. Apodemus agrarius, the primary reservoir for Hantaan virus (HTNV), accounted for 89.9% (1,546) of all small mammals captured, followed by Myodes regulus (4.0%), Crocidura lasiura (3.9%), Micromys minutus (1.4%), Mus musculus (0.3%), Microtus fortis (0.2%), Apodemus peninsulae (0.2%), Tamias sibiricus (0.1%), and Rattus norvegicus (<0.1%). Three species were antibody-positive (Ab+) for hantaviruses: A. agrarius (8.2%), M. minutus (4.2%), and C. lasiura (1.5%). HTNV specific RNA was detected in 93/127 Ab+ A. agrarius, while Imjin virus specific RNA was detected in 1/1 Ab+ C. lasiura. Overall, hantavirus Ab+ rates for A. agrarius increased with weight (age) and were significantly higher among males (10.9%) than females (5.1%) (P<0.0001). High A. agrarius gravid rates during the fall (August-September) were associated with peak numbers of HFRS cases in Korea that followed high gravid rates. From 79 RT-PCR positive A. agrarius, 12 HTNV RNA samples were sequenced and compared phylogenetically based on a 320 nt sequence from the GC glycoprotein-encoding M segment. These results demonstrate that the HTNV isolates from NM-R are distinctly separated from HTNV isolated from the People’s Republic of China. These studies provide for improved disease risk assessments that identify military activities, rodent HTNV rates, and other factors associated with the transmission of hantaviruses during field training exercises.
Collapse
Affiliation(s)
- Terry A. Klein
- Force Health Protection and Preventive Medicine, 65th Medical Brigade/US Army MEDDAC-Korea, Unit 15281, APO AP 96205–528, United States of America
| | - Heung-Chul Kim
- 5th Medical Detachment, 168 Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205–5247, United States of America
| | - Sung-Tae Chong
- 5th Medical Detachment, 168 Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205–5247, United States of America
| | - Jeong-Ah Kim
- Department of Microbiology, College of Medicine, Institute of Biomedical Science & Food Safety, Korea University, 126–1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136–705, Republic of Korea
| | - Sook-Young Lee
- Department of Microbiology, College of Medicine, Institute of Biomedical Science & Food Safety, Korea University, 126–1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136–705, Republic of Korea
| | - Won-Keun Kim
- Department of Microbiology, College of Medicine, Institute of Biomedical Science & Food Safety, Korea University, 126–1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136–705, Republic of Korea
| | - Peter V. Nunn
- 5th Medical Detachment, 168 Multifunctional Medical Battalion, 65th Medical Brigade, Unit 15247, APO AP 96205–5247, United States of America
| | - Jin-Won Song
- Department of Microbiology, College of Medicine, Institute of Biomedical Science & Food Safety, Korea University, 126–1, 5-ga, Anam-dong, Seongbuk-gu, Seoul, 136–705, Republic of Korea
- * E-mail:
| |
Collapse
|
9
|
Tkachenko EA, Witkowski PT, Radosa L, Dzagurova TK, Okulova NM, Yunicheva YV, Vasilenko L, Morozov VG, Malkin GA, Krüger DH, Klempa B. Adler hantavirus, a new genetic variant of Tula virus identified in Major's pine voles (Microtus majori) sampled in southern European Russia. INFECTION GENETICS AND EVOLUTION 2014; 29:156-63. [PMID: 25433134 DOI: 10.1016/j.meegid.2014.11.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/21/2014] [Accepted: 11/22/2014] [Indexed: 11/19/2022]
Abstract
Although at least 30 novel hantaviruses have been recently discovered in novel hosts such as shrews, moles and even bats, hantaviruses (family Bunyaviridae, genus Hantavirus) are primarily known as rodent-borne human pathogens. Here we report on identification of a novel hantavirus variant associated with a rodent host, Major's pine vole (Microtus majori). Altogether 36 hantavirus PCR-positive Major's pine voles were identified in the Krasnodar region of southern European Russia within the years 2008-2011. Initial partial L-segment sequence analysis revealed novel hantavirus sequences. Moreover, we found a single common vole (Microtusarvalis) infected with Tula virus (TULV). Complete S- and M-segment coding sequences were determined from 11 Major's pine voles originating from 8 trapping sites and subjected to phylogenetic analyses. The data obtained show that Major's pine vole is a newly recognized hantavirus reservoir host. The newfound virus, provisionally called Adler hantavirus (ADLV), is closely related to TULV. Based on amino acid differences to TULV (5.6-8.2% for nucleocapsid protein, 9.4-9.5% for glycoprotein precursor) we propose to consider ADLV as a genotype of TULV. Occurrence of ADLV and TULV in the same region suggests that ADLV is not only a geographical variant of TULV but a host-specific genotype. High intra-cluster nucleotide sequence variability (up to 18%) and geographic clustering indicate long-term presence of the virus in this region.
Collapse
Affiliation(s)
- Evgeniy A Tkachenko
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Peter T Witkowski
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Hospital, Berlin, Germany
| | - Lukas Radosa
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Hospital, Berlin, Germany
| | - Tamara K Dzagurova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Nataliya M Okulova
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | | | | | | | - Gennadiy A Malkin
- Chumakov Institute of Poliomyelitis and Viral Encephalitides, Moscow, Russia
| | - Detlev H Krüger
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Hospital, Berlin, Germany
| | - Boris Klempa
- Institute of Medical Virology, Helmut-Ruska-Haus, Charité University Hospital, Berlin, Germany; Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
10
|
Comment on Jameson et al.: Prevalence of antibodies against hantaviruses in serum and saliva of adults living or working on farms in Yorkshire, United Kingdom. Viruses 2014; 6:3415-24. [PMID: 25256389 PMCID: PMC4189028 DOI: 10.3390/v6093415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/25/2014] [Accepted: 08/26/2014] [Indexed: 11/21/2022] Open
Abstract
This British hantavirus IgG prevalence study, aimed at 119 asymptomatic farmers in England, and using indirect immunofluorescence assay (IFA) as screening technique, concluded that rat-transmitted Seoul virus (SEOV) might be the main suspect as hantaviral pathogen in the UK. Exactly the same conclusion, using the same IFA screening technique, resulted from a 1994 serosurvey in the same country, and in 627 clinical cases plus 100 healthy controls. SEOV-positive study subjects were also mainly farmers with heavy rat-exposure, but residing in Northern-Ireland, a region where all other known rodent reservoirs for pathogenic hantaviruses are known to be absent, except the wild rat. A rodent capture action in and around the farms of eight seropositives confirmed SEOV seropositivity in 21.6% of 51 rats. All SEOV seropositives were patients, hospitalized with an acute feverish condition, a majority of which having the clinical picture of hantavirus-induced nephropathy, known as hemorrhagic fever with renal syndrome (HFRS). Leptospirosis, often mimicking perfectly HFRS, was serologically excluded. Thus, SEOV was established as a human hantaviral pathogen in the UK and in Europe 20 years ago.
Collapse
|