1
|
Mokhtari S, Saris PEJ, Takala TM. Heterologous expression and purification of the phage lysin-like bacteriocin LysL from Lactococcus lactis LAC460. FEMS Microbiol Lett 2024; 371:fnae065. [PMID: 39153967 PMCID: PMC11370637 DOI: 10.1093/femsle/fnae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/12/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024] Open
Abstract
The wild-type Lactococcus lactis strain LAC460 produces two bacteriocin-like phage lysins, LysL and LysP. This study aimed to produce and secrete LysL in various heterologous hosts and an in vitro cell-free expression system for further functional studies. Initially, the lysL gene from L. lactis LAC460 was cloned into Lactococcus cremoris NZ9000 and L. lactis N8 strains, with and without the usp45 signal sequence (SSusp45), under a nisin-inducible promoter. Active LysL was primarily produced intracellularly in recombinant L. lactis N8, with some secretion into the supernatant. Recombinant L. cremoris NZ9000 lysed upon nisin induction, indicating successful lysL expression. However, fusion with Usp45 signal peptide (SPUsp45-LysL) weakened LysL activity, likely due to incomplete signal peptide cleavage during secretion. Active LysL was also produced in vitro, and analysed in SDS-PAGE, giving a 42-kDa band. However, the yield of LysL protein was still low when produced from recombinant lactococci or by in vitro expression system. Therefore, His-tagged LysL was produced in Escherichia coli BL21(DE3). Western blot confirmed the intracellular production of about 44-kDa His-tagged LysL in E. coli. His-tagged active LysL was then purified by Ni-NTA affinity chromatography yielding sufficient 4.34 mg of protein to be used in future functional studies.
Collapse
Affiliation(s)
- Samira Mokhtari
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Per E J Saris
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| | - Timo M Takala
- Department of Microbiology, University of Helsinki, PO Box 56, FI-00014 Helsinki, Finland
| |
Collapse
|
2
|
Dorosky RJ, Lola SL, Brown HA, Schreier JE, Dreher-Lesnick SM, Stibitz S. Characterization of Lactobacilli Phage Endolysins and Their Functional Domains-Potential Live Biotherapeutic Testing Reagents. Viruses 2023; 15:1986. [PMID: 37896764 PMCID: PMC10610939 DOI: 10.3390/v15101986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Phage endolysin-specific binding characteristics and killing activity support their potential use in biotechnological applications, including potency and purity testing of live biotherapeutic products (LBPs). LBPs contain live organisms, such as lactic acid bacteria (LAB), and are intended for use as drugs. Our approach uses the endolysin cell wall binding domains (CBD) for LBP potency assays and the endolysin killing activity for purity assays. CBDs of the following five lactobacilli phage lysins were characterized: CL1, Jlb1, Lj965, LL-H, and ΦJB. They exhibited different bindings to 27 LAB strains and were found to bind peptidoglycan or surface polymers. Flow cytometry based on CBD binding was used to enumerate viable counts of two strains in the mixture. CL1-lys, jlb1-lys, and ΦJB-lys and their enzymatic domains (EADs) exhibited cell wall digestive activity and lytic activity against LAB. Jlb1-EAD and ΦJB-EAD were more sensitive than their respective hololysins to buffer pH and NaCl changes. The ΦJB-EAD exhibited stronger lytic activity than ΦJB-lys, possibly due to ΦJB-CBD-mediated sequestration of ΦJB-lys by cell debris. CBD multiplex assays indicate that these proteins may be useful LBP potency reagents, and the lytic activity suggests that CL1-lys, jlb1-lys, and ΦJB-lys and their EADs are good candidates for LBP purity reagent development.
Collapse
Affiliation(s)
- Robert J. Dorosky
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Stephanie L. Lola
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Haleigh A. Brown
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jeremy E. Schreier
- Department of Marine Sciences, University of Georgia, Athens, GA 30602, USA
| | - Sheila M. Dreher-Lesnick
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Scott Stibitz
- Office of Vaccines Research and Review, Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
3
|
Zavišić G, Ristić S, Petković B, Živkov-Šaponja D, Jojić N, Janković D. Microbiological quality of probiotic products. ARHIV ZA FARMACIJU 2023. [DOI: 10.5937/arhfarm73-42160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
Abstract
Microorganisms used as probiotics should meet elementary safety aspects (non-toxicity, absence of antibiotic resistance genes and translocation) and functional/technological aspects (resistance and survival in the acid gastric environment, adhesiveness, stability, and cell viability). Probiotics with the health claim of being a dietary product or a pharmabiotic (drug category) should be clinically tested, validated, documented, and continuously controlled for quality. Important quality parameters include the identification of declared probiotic strains, the number of viable microorganisms (probiotic bacteria and/or fungi), and microbiological purity (absence of specified pathogenic/opportunistic pathogenic bacteria and fungi, and limitation of total unspecified contaminants such as aerobic bacteria, yeasts, and molds). Due to numerous reports of low-quality commercial probiotics marketed for human use, this review discusses the methods used to test the probiotic microorganism content, safety for the intended use, and proven health benefits of those probiotics whose microbiological quality deviates from the manufacturer's stated content, as well as the maintenance of cell viability, i.e., stability of the probiotic during the shelf life. In addition, the adverse effects of probiotics and the potential hazards to the health of the user are addressed.
Collapse
|
4
|
McChalicher CW, Auniņš JG. Drugging the microbiome and bacterial live biotherapeutic consortium production. Curr Opin Biotechnol 2022; 78:102801. [PMID: 36228531 DOI: 10.1016/j.copbio.2022.102801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 12/14/2022]
Abstract
Research leading to characterization, quantification, and functional attribution of the microbes throughout the human body has led to many drug-development programs. These programs aim to manipulate a patient's microbiome through the addition of new strains or functions, the subtraction of deleterious microbes, or the rebalancing of the existing population through various drug modalities. Here, we present a general overview of those modalities with a specific focus on bacterial live biotherapeutic products (LBPs). The bacterial LBP modality has unique concerns to ensure product quality, thus, topics related to manufacturing, quality control, and regulation are addressed.
Collapse
Affiliation(s)
| | - John G Auniņš
- Seres Therapeutics Inc, 200 Sidney St, Cambridge, MA 02139, United States.
| |
Collapse
|
5
|
Karaçam S, Tunçer S. Exploiting the Acidic Extracellular pH: Evaluation of Streptococcus salivarius M18 Postbiotics to Target Cancer Cells. Probiotics Antimicrob Proteins 2022; 14:995-1011. [PMID: 34080175 DOI: 10.1007/s12602-021-09806-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2021] [Indexed: 12/24/2022]
Abstract
Previously, we showed that the growth, antibiotic resistance, and biofilm formation properties of the pathogens Pseudomonas aeruginosa and Klebsiella pneumonia were tremendously inhibited by the cell-free supernatant of the oral probiotic Streptococcus salivarius M18. These anti-pathogenic activities of the supernatant were more efficient under acidic conditions. The present approach takes advantage of the acidic nature of the tumor microenvironment to evaluate the effect of the S. salivarius M18 postbiotics on colon cancer cells. In both two-dimensional (2D) and three-dimensional (3D) cell culture models, S. salivarius M18 cell-free supernatant showed anti-cancer actions in the pH conditions mimicking the acidity of the tumor. The inhibitory effect was more prominent when the colon cancer cells have been treated with the cell-free supernatant obtained from the inulin incubated S. salivarius M18. The results of this study point out the potential of the S. salivarius M18 functional probiotic products to be used for targeting low pH environments including the unique acidic microenvironment of tumors.
Collapse
Affiliation(s)
- Sevinç Karaçam
- Department of Biotechnology, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey
| | - Sinem Tunçer
- Biotechnology Application and Research Center, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
- Department of Medical Services and Techniques, Vocational School of Health Services, Bilecik Şeyh Edebali University, 11230, Bilecik, Turkey.
| |
Collapse
|
6
|
Vazquez-Munoz R, Dongari-Bagtzoglou A. Anticandidal Activities by Lactobacillus Species: An Update on Mechanisms of Action. FRONTIERS IN ORAL HEALTH 2021; 2:689382. [PMID: 35048033 PMCID: PMC8757823 DOI: 10.3389/froh.2021.689382] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/21/2021] [Indexed: 12/15/2022] Open
Abstract
Lactobacilli are among the most studied bacteria in the microbiome of the orodigestive and genitourinary tracts. As probiotics, lactobacilli may provide various benefits to the host. These benefits include regulating the composition of the resident microbiota, preventing - or even potentially reverting- a dysbiotic state. Candida albicans is an opportunistic pathogen that can influence and be influenced by other members of the mucosal microbiota and, under immune-compromising conditions, can cause disease. Lactobacillus and Candida species can colonize the same mucosal sites; however, certain Lactobacillus species display antifungal activities that can contribute to low Candida burdens and prevent fungal infection. Lactobacilli can produce metabolites with direct anticandidal function or enhance the host defense mechanisms against fungi. Most of the Lactobacillus spp. anticandidal mechanisms of action remain underexplored. This work aims to comprehensively review and provide an update on the current knowledge regarding these anticandidal mechanisms.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| | - Anna Dongari-Bagtzoglou
- Department of Oral Health and Diagnostic Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
7
|
Martínez B, Rodríguez A, Kulakauskas S, Chapot-Chartier MP. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol Rev 2021; 44:538-564. [PMID: 32495833 PMCID: PMC7476776 DOI: 10.1093/femsre/fuaa021] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022] Open
Abstract
Lactic acid bacteria (LAB) encompasses industrially relevant bacteria involved in food fermentations as well as health-promoting members of our autochthonous microbiota. In the last years, we have witnessed major progresses in the knowledge of the biology of their cell wall, the outermost macrostructure of a Gram-positive cell, which is crucial for survival. Sophisticated biochemical analyses combined with mutation strategies have been applied to unravel biosynthetic routes that sustain the inter- and intra-species cell wall diversity within LAB. Interplay with global cell metabolism has been deciphered that improved our fundamental understanding of the plasticity of the cell wall during growth. The cell wall is also decisive for the antimicrobial activity of many bacteriocins, for bacteriophage infection and for the interactions with the external environment. Therefore, genetic circuits involved in monitoring cell wall damage have been described in LAB, together with a plethora of defence mechanisms that help them to cope with external threats and adapt to harsh conditions. Since the cell wall plays a pivotal role in several technological and health-promoting traits of LAB, we anticipate that this knowledge will pave the way for the future development and extended applications of LAB.
Collapse
Affiliation(s)
- Beatriz Martínez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Ana Rodríguez
- DairySafe research group. Department of Technology and Biotechnology of Dairy Products. Instituto de Productos Lácteos de Asturias, IPLA-CSIC. Paseo Río Linares s/n. 33300 Villaviciosa, Spain
| | - Saulius Kulakauskas
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350, Jouy-en-Josas, France
| | | |
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW With the growing popularity and commercialization of probiotics, it is important to understand the implications of existing randomized controlled trials and their applicability in the clinical setting to treat luminal gastrointestinal diseases. RECENT FINDINGS Probiotics may be useful in the prevention of antibiotic-associated diarrhea, prevention of Clostridioides difficile infection and eradication of Helicobacter pylori. Some evidence supports the use of probiotics in the treatment of ulcerative colitis, prevention and treatment of pouchitis and irritable bowel syndrome. Caution has to be exercised in immunocompromised and critically ill individuals. New society guidelines do not encourage probiotic use in gastrointestinal disorders with the exception of premature infants to prevent necrotizing enterocolitis. SUMMARY Despite burgeoning body of literature and wide acceptance by the public, a thorough understanding of efficacy and safety of probiotics is lacking. Uniform dosage, standardized clinical end points, personalization based on host microbial profile and longer duration of follow-up on the research front may help in the future in appropriate positioning of probiotics in health and disease.
Collapse
Affiliation(s)
- Abbinaya Elangovan
- Department of Internal Medicine-Pediatrics, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Monika Fischer
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, Indiana, USA
| |
Collapse
|
9
|
Jackson SA, Schoeni JL, Vegge C, Pane M, Stahl B, Bradley M, Goldman VS, Burguière P, Atwater JB, Sanders ME. Improving End-User Trust in the Quality of Commercial Probiotic Products. Front Microbiol 2019; 10:739. [PMID: 31105649 PMCID: PMC6499161 DOI: 10.3389/fmicb.2019.00739] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/25/2019] [Indexed: 01/09/2023] Open
Abstract
In a rapidly growing global probiotic market, end-users have difficulty distinguishing between high quality and poor quality products. This ambiguity threatens the trust consumers and healthcare providers have in probiotic products. To address this problem, we recommend that companies undergo third-party evaluations to certify probiotic quality and label accuracy. In order to communicate about product quality to end-users, indication of certification on product labels is helpful, although not all manufacturers choose to use this approach. Herein we discuss: third-party certification, the process of setting standards for identity, purity, and quantification of probiotics; some emerging methodologies useful for quality assessment; and some technical challenges unique to managing quality of live microbial products. This review provides insights of an Expert Panel engaged in this process and aims to update the reader on relevant current scientific methodologies. Establishing validated methodologies for all aspects of quality assessment is an essential component of this process and can be facilitated by established organizations, such as United States Pharmacopeia. Emerging methodologies including whole genome sequencing and flow cytometry are poised to play important roles in these processes.
Collapse
Affiliation(s)
- Scott A. Jackson
- National Institute of Standards and Technology, Gaithersburg, MD, United States
| | - Jean L. Schoeni
- Eurofins Food Integrity and Innovation, Madison, WI, United States
| | | | | | - Buffy Stahl
- DuPont Nutrition & Health, Madison, WI, United States
| | | | - Virginia S. Goldman
- Department of Dietary Supplements and Herbal Medicines, Science Division, US Pharmacopeial Convention, Rockville, MD, United States
| | | | | | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Sacramento, CA, United States
| |
Collapse
|
10
|
Fujiki J, Nakamura T, Furusawa T, Ohno H, Takahashi H, Kitana J, Usui M, Higuchi H, Tanji Y, Tamura Y, Iwano H. Characterization of the Lytic Capability of a LysK-Like Endolysin, Lys-phiSA012, Derived from a Polyvalent Staphylococcus aureus Bacteriophage. Pharmaceuticals (Basel) 2018; 11:ph11010025. [PMID: 29495305 PMCID: PMC5874721 DOI: 10.3390/ph11010025] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/17/2018] [Accepted: 02/19/2018] [Indexed: 12/19/2022] Open
Abstract
Antibiotic-resistant bacteria (ARB) have spread widely and rapidly, with their increased occurrence corresponding with the increased use of antibiotics. Infections caused by Staphylococcus aureus have a considerable negative impact on human and livestock health. Bacteriophages and their peptidoglycan hydrolytic enzymes (endolysins) have received significant attention as novel approaches against ARB, including S. aureus. In the present study, we purified an endolysin, Lys-phiSA012, which harbors a cysteine/histidine-dependent amidohydrolase/peptidase (CHAP) domain, an amidase domain, and a SH3b cell wall binding domain, derived from a polyvalent S. aureus bacteriophage which we reported previously. We demonstrate that Lys-phiSA012 exhibits high lytic activity towards staphylococcal strains, including methicillin-resistant S. aureus (MRSA). Analysis of deletion mutants showed that only mutants possessing the CHAP and SH3b domains could lyse S. aureus, indicating that lytic activity of the CHAP domain depended on the SH3b domain. The presence of at least 1 mM Ca2+ and 100 µM Zn2+ enhanced the lytic activity of Lys-phiSA012 in a turbidity reduction assay. Furthermore, a minimum inhibitory concentration (MIC) assay showed that the addition of Lys-phiSA012 decreased the MIC of oxacillin. Our results suggest that endolysins are a promising approach for replacing current antimicrobial agents and may contribute to the proper use of antibiotics, leading to the reduction of ARB.
Collapse
Affiliation(s)
- Jumpei Fujiki
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
| | - Tomohiro Nakamura
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
| | - Takaaki Furusawa
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
| | - Hazuki Ohno
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
| | - Hiromichi Takahashi
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
| | - Junya Kitana
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (M.U.); (Y.T.)
| | - Hidetoshi Higuchi
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan;
| | - Yasunori Tanji
- Department of Bioengineering, Tokyo Institute of Technology, Yokohama 226-8502, Japan;
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (M.U.); (Y.T.)
- Center for Veterinary Drug Development, Rakuno Gakuen University, Ebetsu 069-8501, Japan
| | - Hidetomo Iwano
- Laboratory of Biochemistry, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan; (J.F.); tomohiro-tobi-@hotmail.co.jp (T.N.); (T.F.); (H.O.); (H.T.); (J.K.)
- Correspondence: ; Fax: +81-11-388-4885
| |
Collapse
|
11
|
Kusinitz M, Braunstein E, Wilson CA. Advancing Public Health Using Regulatory Science to Enhance Development and Regulation of Medical Products: Food and Drug Administration Research at the Center for Biologics Evaluation and Research. Front Med (Lausanne) 2017; 4:71. [PMID: 28660187 PMCID: PMC5466996 DOI: 10.3389/fmed.2017.00071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/23/2017] [Indexed: 01/02/2023] Open
Abstract
Center for Biologics Evaluation and Research enhances and supports regulatory decision-making and policy development. This work contributes to our regulatory mission, advances medical product development, and supports Food and Drug Administration’s regulatory response to public health crises. This review presents some examples of our diverse scientific work undertaken in recent years to support our regulatory and public health mission.
Collapse
|