1
|
Aravindraja C, Jeepipalli S, Duncan WD, Vekariya KM, Rahaman SO, Chan EKL, Kesavalu L. Streptococcus gordonii Supragingival Bacterium Oral Infection-Induced Periodontitis and Robust miRNA Expression Kinetics. Int J Mol Sci 2024; 25:6217. [PMID: 38892405 PMCID: PMC11172800 DOI: 10.3390/ijms25116217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Streptococcus gordonii (S. gordonii, Sg) is one of the early colonizing, supragingival commensal bacterium normally associated with oral health in human dental plaque. MicroRNAs (miRNAs) play an important role in the inflammation-mediated pathways and are involved in periodontal disease (PD) pathogenesis. PD is a polymicrobial dysbiotic immune-inflammatory disease initiated by microbes in the gingival sulcus/pockets. The objective of this study is to determine the global miRNA expression kinetics in S. gordonii DL1-infected C57BL/6J mice. All mice were randomly divided into four groups (n = 10 mice/group; 5 males and 5 females). Bacterial infection was performed in mice at 8 weeks and 16 weeks, mice were euthanized, and tissues harvested for analysis. We analyzed differentially expressed (DE) miRNAs in the mandibles of S. gordonii-infected mice. Gingival colonization/infection by S. gordonii and alveolar bone resorption (ABR) was confirmed. All the S. gordonii-infected mice at two specific time points showed bacterial colonization (100%) in the gingival surface, and a significant increase in mandible and maxilla ABR (p < 0.0001). miRNA profiling revealed 191 upregulated miRNAs (miR-375, miR-34b-5p) and 22 downregulated miRNAs (miR-133, miR-1224) in the mandibles of S. gordonii-infected mice at the 8-week mark. Conversely, at 16 weeks post-infection, 10 miRNAs (miR-1902, miR-203) were upregulated and 32 miRNAs (miR-1937c, miR-720) were downregulated. Two miRNAs, miR-210 and miR-423-5p, were commonly upregulated, and miR-2135 and miR-145 were commonly downregulated in both 8- and 16-week-infected mice mandibles. Furthermore, we employed five machine learning (ML) algorithms to assess how the number of miRNA copies correlates with S. gordonii infections in mice. In the ML analyses, miR-22 and miR-30c (8-week), miR-720 and miR-339-5p (16-week), and miR-720, miR-22, and miR-339-5p (combined 8- and 16-week) emerged as the most influential miRNAs.
Collapse
Affiliation(s)
- Chairmandurai Aravindraja
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Syam Jeepipalli
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - William D. Duncan
- Department of Community Dentistry and Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Krishna Mukesh Vekariya
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
| | - Shaik O. Rahaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA;
| | - Edward K. L. Chan
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| | - Lakshmyya Kesavalu
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA; (C.A.); (S.J.); (K.M.V.)
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA;
| |
Collapse
|
2
|
Zhang Q, Song X, Ma P, Lv L, Zhang Y, Deng J, Zhang Y. Human Cytomegalovirus miR-US33as-5p Targets IFNAR1 to Achieve Immune Evasion During Both Lytic and Latent Infection. Front Immunol 2021; 12:628364. [PMID: 33746965 PMCID: PMC7973039 DOI: 10.3389/fimmu.2021.628364] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/04/2021] [Indexed: 11/21/2022] Open
Abstract
As the first line of antiviral defense, type I interferon (IFN) binds IFN receptor 1 (IFNAR1) and IFNAR2 to activate the Jak-STAT signal transduction pathway, producing IFN-stimulated genes (ISGs) to control viral infection. The mechanisms by which human cytomegalovirus (HCMV) counteracts the IFN pathway are only partially defined. We show that miR-US33as-5p encoded by HCMV is expressed in both lytic and latent infection. By analysis with RNA hybrid and screening with luciferase reporter assays, we identified IFNAR1 as a target of hcmv-miR-US33as-5p, which was further verified by examining the expression of two IFNAR1 mutants and the binding of IFNAR1 to miR-US33as-5p/miR-US33as-5p-M1/miR-US33as-5p-M2. We found that after the transfection of miR-US33as-5p mimics into different cell lines, the phosphorylation of downstream proteins and ISG expression were downregulated. Immunofluorescence showed that the miR-US33as-5p mimics also inhibited STAT1 translocation into the nucleus. Furthermore, we constructed HCMV with mutant miR-US33as-5p and determined that the mutation did not affect HCMV replication. We found that MRC-5/human foreskin fibroblast (HFF) cells infected with ΔmiRNA HCMV exhibited higher IFNAR1 and ISG expression and a reduced viral load in the presence of exogenous IFN than cells infected with WT HCMV did, confirming that the knockout of miR-US33as-5p impaired viral resistance to IFN. Finally, we tested the effect of ΔmiRNA HCMV on THP-1 and d-THP-1 cells, common in vitro models of latent infection and reactivation, respectively. Again, we found that cells infected with ΔmiRNA HCMV showed a reduced viral load in the presence of IFN than the control cells did, confirming that miR-US33as-5p also affects IFN resistance during both latency and reactivation. These results indicate a new microRNA (miRNA)-based immune evasion mechanism employed by HCMV to achieve lifelong infection.
Collapse
Affiliation(s)
- Qian Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Xin Song
- Department of Otolaryngology Head and Neck Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ping Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Liping Lv
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yangyang Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Jiang Deng
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| | - Yanyu Zhang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China.,Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, China
| |
Collapse
|
3
|
Xiao J, Deng J, Zhang Q, Ma P, Lv L, Zhang Y, Li C, Zhang Y. Targeting human cytomegalovirus IE genes by CRISPR/Cas9 nuclease effectively inhibits viral replication and reactivation. Arch Virol 2020; 165:1827-1835. [PMID: 32507978 DOI: 10.1007/s00705-020-04687-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/29/2020] [Indexed: 01/23/2023]
Abstract
Human cytomegalovirus (HCMV) infection causes high morbidity and mortality among immunocompromised patients and can remain in a latent state in host cells. Expression of the immediate-early (IE) genes sustains HCMV replication and reactivation. As a novel genome-editing tool, the clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has been extensively utilized to modify and edit genomic DNA. In the present study, the CRISPR/Cas9 system was used to target the IE region of the HCMV genome via specific single-guide RNAs (sgRNAs). Infection with CRISPR/Cas9/sgRNA lentiviral constructs significantly reduced viral gene expression and virion production in HFF primary fibroblasts and inhibited viral DNA production and reactivation in the THP-1 monocytic cell line. Thus, the CRISPR/Cas9/sgRNA system can accurately and efficiently target HCMV replication and reactivation and represents a novel therapeutic strategy against latent HCMV infection.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Blood Transfusion, Air Force Medical Center, PLA, 30 Fucheng Road, Beijing, 100142, P.R. China
| | - Jiang Deng
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Qian Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Ping Ma
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Liping Lv
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Yangyang Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China
| | - Cuiying Li
- Department of Blood Transfusion, Air Force Medical Center, PLA, 30 Fucheng Road, Beijing, 100142, P.R. China.
| | - Yanyu Zhang
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing, 100850, P.R. China.
- Institute of Health Service and Transfusion Medicine, Beijing, 100850, P.R. China.
| |
Collapse
|
4
|
Hu S, Li Z, Lan Y, Guan J, Zhao K, Chu D, Fan G, Guo Y, Gao F, He W. MiR-10a-5p-Mediated Syndecan 1 Suppression Restricts Porcine Hemagglutinating Encephalomyelitis Virus Replication. Front Microbiol 2020; 11:105. [PMID: 32153518 PMCID: PMC7044266 DOI: 10.3389/fmicb.2020.00105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/17/2020] [Indexed: 01/23/2023] Open
Abstract
Porcine hemagglutinating encephalomyelitis virus (PHEV) is a single-stranded RNA coronavirus that causes nervous dysfunction in the infected hosts and leads to widespread alterations in the host transcriptome by modulating specific microRNA (miRNA) levels. MiRNAs contribute to RNA virus pathogenesis by promoting antiviral immune response, enhancing viral replication, or altering miRNA-mediated host gene regulation. Thus, exploration of the virus-miRNA interactions occurring in PHEV-infected host may lead to the identification of novel mechanisms combating the virus life cycle or pathogenesis. Here, we discovered that the expression of miR-10a-5p was constitutively up-regulated by PHEV in both the N2a cells in vitro and mice brain in vivo. Treatment with miR-10a-5p mimics allowed miR-10a-5p enrichment and resulted in a significant restriction in PHEV replication, suggesting widespread negative regulation of the RNA virus infection by miR-10a-5p. The outcomes were also evidenced by miR-10a-5p inhibitor over-expression. Luciferase reporter, quantitative real-time PCR (qRT-PCR), and western blotting analysis further showed that Syndecan 1 (SDC1), a cell surface proteoglycan associated with host defense mechanisms, acts as a target gene of miR-10a-5p during PHEV infection. Naturally, siRNA-mediated knockdown of SDC1 leads to a reduction in viral replication, implying that SDC1 expression is likely a favorable condition for viral replication. Together, the findings demonstrated that the abundant miR-10a-5p leads to downstream suppression of SDC1, and it functions as an antiviral mechanism in the PHEV-induced disease, providing a potential strategy for the prevention and treatment of PHEV infection in the future work.
Collapse
Affiliation(s)
- Shiyu Hu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zi Li
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yungang Lan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Kui Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dianfeng Chu
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Gencheng Fan
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Yuguang Guo
- State Key Laboratory of Genetically Engineered Veterinary Vaccines, Yebio Bioengineering Co., Ltd. of Qingdao, Qingdao, China
| | - Feng Gao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wenqi He
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
5
|
HCMV miRNA Targets Reveal Important Cellular Pathways for Viral Replication, Latency, and Reactivation. Noncoding RNA 2018; 4:ncrna4040029. [PMID: 30360396 PMCID: PMC6315856 DOI: 10.3390/ncrna4040029] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 02/06/2023] Open
Abstract
It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.
Collapse
|