1
|
Han X, Yang X, Chen S, Wang H, Liu X, Wang D, Yang J, Chen L, Sun B, Li H, Shi Y. Barley yellow dwarf virus-GAV 17K protein disrupts thiamine biosynthesis to facilitate viral infection in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:432-444. [PMID: 38635415 DOI: 10.1111/tpj.16772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/20/2024]
Abstract
Thiamine functions as a crucial activator modulating plant health and broad-spectrum stress tolerances. However, the role of thiamine in regulating plant virus infection is largely unknown. Here, we report that the multifunctional 17K protein encoded by barley yellow dwarf virus-GAV (BYDV-GAV) interacted with barley pyrimidine synthase (HvTHIC), a key enzyme in thiamine biosynthesis. HvTHIC was found to be localized in chloroplast via an N-terminal 74-amino acid domain. However, the 17K-HvTHIC interaction restricted HvTHIC targeting to chloroplasts and triggered autophagy-mediated HvTHIC degradation. Upon BYDV-GAV infection, the expression of the HvTHIC gene was significantly induced, and this was accompanied by accumulation of thiamine and salicylic acid. Silencing of HvTHIC expression promoted BYDV-GAV accumulation. Transcriptomic analysis of HvTHIC silenced and non-silenced barley plants showed that the differentially expressed genes were mainly involved in plant-pathogen interaction, plant hormone signal induction, phenylpropanoid biosynthesis, starch and sucrose metabolism, photosynthesis-antenna protein, and MAPK signaling pathway. Thiamine treatment enhanced barley resistance to BYDV-GAV. Taken together, our findings reveal a molecular mechanism underlying how BYDV impedes thiamine biosynthesis to uphold viral infection in plants.
Collapse
Affiliation(s)
- Xiaoyu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xue Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyu Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - He Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaomin Liu
- Institute of Cereal and Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050031, China
| | - Daowen Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jin Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450046, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
- National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, 450046, China
| |
Collapse
|
2
|
Wang L, Zhang K, Wang Z, Yang J, Kang G, Liu Y, You L, Wang X, Jin H, Wang D, Guo T. Appropriate reduction of importin-α gene expression enhances yellow dwarf disease resistance in common wheat. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:572-586. [PMID: 37855813 PMCID: PMC10893941 DOI: 10.1111/pbi.14204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/21/2023] [Accepted: 10/03/2023] [Indexed: 10/20/2023]
Abstract
Barley yellow dwarf viruses (BYDVs) cause widespread damage to global cereal crops. Here we report a novel strategy for elevating resistance to BYDV infection. The 17K protein, a potent virulence factor conserved in BYDVs, interacted with barley IMP-α1 and -α2 proteins that are nuclear transport receptors. Consistently, a nuclear localization signal was predicted in 17K, which was found essential for 17K to be transported into the nucleus and to interact with IMP-α1 and -α2. Reducing HvIMP-α1 and -α2 expression by gene silencing attenuated BYDV-elicited dwarfism, accompanied by a lowered nuclear accumulation of 17K. Among the eight common wheat CRISPR mutants with two to four TaIMP-α1 and -α2 genes mutated, the triple mutant α1aaBBDD /α2AAbbdd and the tetra-mutant α1aabbdd /α2AAbbDD displayed strong BYDV resistance without negative effects on plant growth under field conditions. The BYDV resistance exhibited by α1aaBBDD /α2AAbbdd and α1aabbdd /α2AAbbDD was correlated with decreased nuclear accumulation of 17K and lowered viral proliferation in infected plants. Our work uncovers the function of host IMP-α proteins in BYDV pathogenesis and generates the germplasm valuable for breeding BYDV-resistant wheat. Appropriate reduction of IMP-α gene expression may be broadly useful for enhancing antiviral resistance in agricultural crops and other economically important organisms.
Collapse
Affiliation(s)
- Lina Wang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Kunpu Zhang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Zhaohui Wang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Jin Yang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Guozhang Kang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| | - Yan Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Liyuan You
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Xifeng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Huaibing Jin
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant ProtectionChinese Academy of Agricultural SciencesBeijingChina
| | - Daowen Wang
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- The Shennong LaboratoryZhengzhouHenanChina
| | - Tiancai Guo
- National Wheat Engineering Research Center, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, College of AgronomyHenan Agricultural UniversityZhengzhouHenanChina
| |
Collapse
|
3
|
Koeppe S, Kawchuk L, Kalischuk M. RNA Interference Past and Future Applications in Plants. Int J Mol Sci 2023; 24:ijms24119755. [PMID: 37298705 DOI: 10.3390/ijms24119755] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/29/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
Antisense RNA was observed to elicit plant disease resistance and post-translational gene silencing (PTGS). The universal mechanism of RNA interference (RNAi) was shown to be induced by double-stranded RNA (dsRNA), an intermediate produced during virus replication. Plant viruses with a single-stranded positive-sense RNA genome have been instrumental in the discovery and characterization of systemic RNA silencing and suppression. An increasing number of applications for RNA silencing have emerged involving the exogenous application of dsRNA through spray-induced gene silencing (SIGS) that provides specificity and environmentally friendly options for crop protection and improvement.
Collapse
Affiliation(s)
- Sarah Koeppe
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| | - Lawrence Kawchuk
- Research Centre, Agriculture and Agri-Food Canada, 5403 1 Ave S., Lethbridge, AB T1J 4B1, Canada
| | - Melanie Kalischuk
- Department of Plant Agriculture, University of Guelph, 50 Stone Road E., Guelph, ON N1G 2W1, Canada
| |
Collapse
|
4
|
Atabekova AK, Solovieva AD, Chergintsev DA, Solovyev AG, Morozov SY. Role of Plant Virus Movement Proteins in Suppression of Host RNAi Defense. Int J Mol Sci 2023; 24:ijms24109049. [PMID: 37240394 DOI: 10.3390/ijms24109049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
One of the systems of plant defense against viral infection is RNA silencing, or RNA interference (RNAi), in which small RNAs derived from viral genomic RNAs and/or mRNAs serve as guides to target an Argonaute nuclease (AGO) to virus-specific RNAs. Complementary base pairing between the small interfering RNA incorporated into the AGO-based protein complex and viral RNA results in the target cleavage or translational repression. As a counter-defensive strategy, viruses have evolved to acquire viral silencing suppressors (VSRs) to inhibit the host plant RNAi pathway. Plant virus VSR proteins use multiple mechanisms to inhibit silencing. VSRs are often multifunctional proteins that perform additional functions in the virus infection cycle, particularly, cell-to-cell movement, genome encapsidation, or replication. This paper summarizes the available data on the proteins with dual VSR/movement protein activity used by plant viruses of nine orders to override the protective silencing response and reviews the different molecular mechanisms employed by these proteins to suppress RNAi.
Collapse
Affiliation(s)
- Anastasia K Atabekova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
| | - Anna D Solovieva
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Denis A Chergintsev
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Andrey G Solovyev
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| | - Sergey Y Morozov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119992 Moscow, Russia
- Department of Virology, Biological Faculty, Moscow State University, 119234 Moscow, Russia
| |
Collapse
|
5
|
Kondo H, Sugahara H, Fujita M, Hyodo K, Andika IB, Hisano H, Suzuki N. Discovery and Genome Characterization of a Closterovirus from Wheat Plants with Yellowing Leaf Symptoms in Japan. Pathogens 2023; 12:358. [PMID: 36986280 PMCID: PMC10053543 DOI: 10.3390/pathogens12030358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 02/24/2023] Open
Abstract
Many aphid-borne viruses are important pathogens that affect wheat crops worldwide. An aphid-transmitted closterovirus named wheat yellow leaf virus (WYLV) was found to have infected wheat plants in Japan in the 1970s; however, since then, its viral genome sequence and occurrence in the field have not been investigated. We observed yellowing leaves in the 2018/2019 winter wheat-growing season in an experimental field in Japan where WYLV was detected five decades ago. A virome analysis of those yellow leaf samples lead to the discovery of a closterovirus together with a luteovirus (barley yellow dwarf virus PAV variant IIIa). The complete genomic sequence of this closterovirus, named wheat closterovirus 1 isolate WL19a (WhCV1-WL19a), consisted of 15,452 nucleotides harboring nine open reading frames. Additionally, we identified another WhCV1 isolate, WL20, in a wheat sample from the winter wheat-growing season of 2019/2020. A transmission test indicated that WhCV1-WL20 was able to form typical filamentous particles and transmissible by oat bird-cherry aphid (Rhopalosiphum pad). Sequence and phylogenetic analyses showed that WhCV1 was distantly related to members of the genus Closterovirus (family Closteroviridae), suggesting that the virus represents a novel species in the genus. Furthermore, the characterization of WhCV1-WL19a-derived small RNAs using high-throughput sequencing revealed highly abundant 22-nt-class small RNAs potentially derived from the 3'-terminal end of the WhCV1 negative-strand genomic RNA, indicating that this terminal end of the WhCV1 genome is likely particularly targeted for the synthesis of viral small RNAs in wheat plants. Our results provide further knowledge on closterovirus diversity and pathogenicity and suggest that the impact of WhCV1 on wheat production warrants further investigations.
Collapse
Affiliation(s)
- Hideki Kondo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Hitomi Sugahara
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Miki Fujita
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Kiwamu Hyodo
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hiroshi Hisano
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| | - Nobuhiro Suzuki
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan
| |
Collapse
|
6
|
Liu SY, Zuo DP, Zhang ZY, Wang Y, Han CG. Identification and Functional Analyses of Host Proteins Interacting with the P3a Protein of Brassica Yellows Virus. BIOLOGY 2023; 12:biology12020202. [PMID: 36829481 PMCID: PMC9952887 DOI: 10.3390/biology12020202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Viruses are obligate parasites that only undergo genomic replication in their host organisms. ORF3a, a newly identified non-AUG-initiated ORF encoded by members of the genus Polerovirus, is required for long-distance movement in plants. However, its interactions with host proteins still remain unclear. Here, we used Brassica yellows virus (BrYV)-P3a as bait to screen a plant split-ubiquitin-based membrane yeast two-hybrid (MYTH) cDNA library to explain the functional role of P3a in viral infections. In total, 138 genes with annotations were obtained. Bioinformatics analyses revealed that the genes from carbon fixation in photosynthetic, photosynthesis pathways, and MAPK signaling were affected. Furthermore, Arabidopsis thaliana purine permease 14 (AtPUP14), glucosinolate transporter 1 (AtGTR1), and nitrate transporter 1.7 (AtNRT1.7) were verified to interact with P3a in vivo. P3a and these three interacting proteins mainly co-localized in the cytoplasm. Expression levels of AtPUP14, AtGTR1, and AtNRT1.7 were significantly reduced in response to BrYV during the late stages of viral infection. In addition, we characterized the roles of AtPUP14, AtGTR1, and AtNRT1.7 in BrYV infection in A. thaliana using T-DNA insertion mutants, and the pup14, gtr1, and nrt1.7 mutants influenced BrYV infection to different degrees.
Collapse
|
7
|
Liao Q, Guo G, Lu R, Wang X, Du Z. Movement Protein Mediates Systemic Necrosis in Tomato Plants with Infection of Tomato Mosaic Virus. Viruses 2023; 15:157. [PMID: 36680197 PMCID: PMC9861833 DOI: 10.3390/v15010157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
The necrogenic strain N5 of tomato mosaic virus (ToMV-N5) causes systemic necrosis in tomato cultivar Hezuo903. In this work, we mapped the viral determinant responsible for the induction of systemic necrosis. By exchanging viral genes between N5 and a non-necrogenic strain S1, we found that movement protein (MP) was the determinant for the differential symptoms caused by both strains. Compared with S1 MP, N5 MP had an additional ability to increase virus accumulation, which was not due to its functions in viral cell-to-cell movement. Actually, N5 MP, but not S1 MP, was a weak RNA silencing suppressor, which assisted viral accumulation. Sequence alignment showed that both MPs differed by only three amino acid residues. Experiments with viruses having mutated MPs indicated that the residue isoleucine at position 170 in MP was the key site for MP to increase virus accumulation, but also was required for MP to induce systemic necrosis in virus-infected tomato plants. Collectively, the lethal necrosis caused by N5 is dependent on its MP protein that enhances virus accumulation via its RNA silencing suppressor activity, probably leading to systemic necrosis responses in tomato plants.
Collapse
Affiliation(s)
- Qiansheng Liao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | | | | | | | - Zhiyou Du
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
8
|
Orchid fleck dichorhavirus movement protein shows RNA silencing suppressor activity. J Gen Virol 2022; 103. [DOI: 10.1099/jgv.0.001805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To counteract RNA interference-mediated antiviral defence, virus genomes evolved to express proteins that inhibit this plant defence mechanism. Using six independent biological approaches, we show that orchid fleck dichorhavirus citrus strain (OFV-citrus) movement protein (MP) may act as a viral suppressor of RNA silencing (VSR). By using the alfalfa mosaic virus (AMV) RNA 3 expression vector, it was observed that the MP triggered necrosis response in transgenic tobacco leaves and increased the viral RNA (vRNA) accumulation. The use of the potato virus X (PVX) expression system revealed that the cis expression of MP increased both the severity of the PVX infection and the accumulation of PVX RNAs, further supporting that MP could act as an RNA silencing suppressor (RSS). From the analysis of the RSS-defective turnip crinkle virus (TCV), we do not find local RSS activity for MP, suggesting a link between MP suppressor activity and the prevention of systemic silencing. In the analysis of local suppressive activity using the GFP-based agroinfiltration assay in Nicotiana benthamiana (16 c line), we do not identify local RSS activity for the five OFV RNA1-encoded proteins. However, when evaluating the small interfering RNA (siRNA) accumulation, we find that the expression of MP significantly reduces the accumulation of GFP-derived siRNA. Finally, we examine whether the MP can prevent systemic silencing in 16c plants. Our findings show that MP inhibits the long-distance spread of RNA silencing, but does not affect the short-distance spread. Together, our findings indicate that MP is part of OFV’s counter-defence mechanism, acting mainly in the prevention of systemic long-distance silencing. This work presents the first report of a VSR for a member of the genus Dichorhavirus.
Collapse
|
9
|
Várallyay E, Přibylová J, Galbacs ZN, Jahan A, Varga T, Špak J, Lenz O, Fránová J, Sedlák J, Koloniuk I. Detection of Apple Hammerhead Viroid, Apple Luteovirus 1 and Citrus Concave Gum-Associated Virus in Apple Propagation Materials and Orchards in the Czech Republic and Hungary. Viruses 2022; 14:v14112347. [PMID: 36366445 PMCID: PMC9695845 DOI: 10.3390/v14112347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 02/01/2023] Open
Abstract
Grafting cultivars onto rootstocks is a widely used practice by the apple industry predominantly aimed at faster fruit bearing. Using high-throughput sequencing, we revealed the presence of recently described viral agents, namely apple hammerhead viroid (AHVd), apple luteovirus 1 (ALV-1), and citrus concave gum-associated virus (CCGaV), in germplasm collections and production orchards in the Czech Republic and Hungary. The HTS results were validated with RT-(q)PCR, and Northern blotting techniques. To obtain further insight about the presence of these agents, RT-PCR based surveys were carried out and showed their widespread presence alone or in mixed infections. The pathogens were present both in production areas and in feral samples. In addition, rootstock-to-scion transmission of ALV-1 and CCGaV was confirmed using commercial rootstock materials. Phylogenetic relationships based on partial sequences of distinct variants were also investigated. Furthermore, the rosy apple aphid was found to be ALV-1-positive, suggesting that it might be a potential vector of the virus.
Collapse
Affiliation(s)
- Eva Várallyay
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Gödöllő, Hungary
- Correspondence: (E.V.); (I.K.)
| | - Jaroslava Přibylová
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Zsuzsanna Nagyne Galbacs
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Gödöllő, Hungary
| | - Almash Jahan
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Gödöllő, Hungary
| | - Tunde Varga
- Genomics Research Group, Department of Plant Pathology, Institute of Plant Protection, Hungarian University of Agriculture and Life Sciences, Szent-Gyorgyi Albert Street 4, 2100 Gödöllő, Hungary
| | - Josef Špak
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Ondřej Lenz
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jana Fránová
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Jiří Sedlák
- Research and Breeding Institute of Pomology Holovousy, Ltd., Holovousy 129, 50801 Holovousy, Czech Republic
| | - Igor Koloniuk
- Czech Academy of Sciences, Biology Centre, Institute of Plant Molecular Biology, Branišovská 31, 37005 České Budějovice, Czech Republic
- Correspondence: (E.V.); (I.K.)
| |
Collapse
|
10
|
You L, Zhang R, Fu ZQ. Achieving a more robust antiviral RNAi via subverting a viral virulence protein. MOLECULAR PLANT 2022; 15:1514-1516. [PMID: 36168292 DOI: 10.1016/j.molp.2022.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/24/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Liyuan You
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Science, Shanghai 201602, China
| | - Ruize Zhang
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
11
|
Miller WA, Lozier Z. Yellow Dwarf Viruses of Cereals: Taxonomy and Molecular Mechanisms. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:121-141. [PMID: 35436423 DOI: 10.1146/annurev-phyto-121421-125135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Yellow dwarf viruses are the most economically important and widespread viruses of cereal crops. Although they share common biological properties such as phloem limitation and obligate aphid transmission, the replication machinery and associated cis-acting signals of these viruses fall into two unrelated taxa represented by Barley yellow dwarf virus and Cereal yellow dwarf virus. Here, we explain the reclassification of these viruses based on their very different genomes. We also provide an overview of viral protein functions and their interactions with the host and vector, replication mechanisms of viral and satellite RNAs, and the complex gene expression strategies. Throughout, we point out key unanswered questions in virus evolution, structural biology, and genome function and replication that, when answered, may ultimately provide new tools for virus management.
Collapse
Affiliation(s)
- W Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| | - Zachary Lozier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa, USA;
- Bioinformatics and Computational Biology Program, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
12
|
Jin H, Han X, Wang Z, Xie Y, Zhang K, Zhao X, Wang L, Yang J, Liu H, Ji X, Dong L, Zheng H, Hu W, Liu Y, Wang X, Zhou X, Zhang Y, Qian W, Zheng W, Shen Q, Gou M, Wang D. Barley GRIK1-SnRK1 kinases subvert a viral virulence protein to upregulate antiviral RNAi and inhibit infection. EMBO J 2022; 41:e110521. [PMID: 35929182 PMCID: PMC9475517 DOI: 10.15252/embj.2021110521] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/25/2022] [Accepted: 06/03/2022] [Indexed: 12/21/2022] Open
Abstract
Viruses often usurp host machineries for their amplification, but it remains unclear if hosts may subvert virus proteins to regulate viral proliferation. Here, we show that the 17K protein, an important virulence factor conserved in barley yellow dwarf viruses (BYDVs) and related poleroviruses, is phosphorylated by host GRIK1‐SnRK1 kinases, with the phosphorylated 17K (P17K) capable of enhancing the abundance of virus‐derived small interfering RNAs (vsiRNAs) and thus antiviral RNAi. Furthermore, P17K interacts with barley small RNA‐degrading nuclease 1 (HvSDN1) and impedes HvSDN1‐catalyzed vsiRNA degradation. Additionally, P17K weakens the HvSDN1‐HvAGO1 interaction, thus hindering HvSDN1 from accessing and degrading HvAGO1‐carried vsiRNAs. Importantly, transgenic expression of 17K phosphomimetics (17K5D), or genome editing of SDN1, generates stable resistance to BYDV through elevating vsiRNA abundance. These data validate a novel mechanism that enhances antiviral RNAi through host subversion of a viral virulence protein to inhibit SDN1‐catalyzed vsiRNA degradation and suggest new ways for engineering BYDV‐resistant crops.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhaohui Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Yilin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Lina Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Jin Yang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Huiyun Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Xiang Ji
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Hongyuan Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Weijuan Hu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xifeng Wang
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xueping Zhou
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Wenming Zheng
- National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, National Wheat Innovation Center, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, China.,State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.,National Biological Experimental Teaching Demonstration Center, College of Life Sciences, Henan Agricultural University, Zhengzhou, China.,The Shennong Laboratory, Zhengzhou, China
| |
Collapse
|
13
|
Niu E, Liu H, Zhou H, Luo L, Wu Y, Andika IB, Sun L. Autophagy Inhibits Intercellular Transport of Citrus Leaf Blotch Virus by Targeting Viral Movement Protein. Viruses 2021; 13:2189. [PMID: 34834995 PMCID: PMC8619118 DOI: 10.3390/v13112189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Autophagy is an evolutionarily conserved cellular-degradation mechanism implicated in antiviral defense in plants. Studies have shown that autophagy suppresses virus accumulation in cells; however, it has not been reported to specifically inhibit viral spread in plants. This study demonstrated that infection with citrus leaf blotch virus (CLBV; genus Citrivirus, family Betaflexiviridae) activated autophagy in Nicotiana benthamiana plants as indicated by the increase of autophagosome formation. Impairment of autophagy through silencing of N. benthamiana autophagy-related gene 5 (NbATG5) and NbATG7 enhanced cell-to-cell and systemic movement of CLBV; however, it did not affect CLBV accumulation when the systemic infection had been fully established. Treatment using an autophagy inhibitor or silencing of NbATG5 and NbATG7 revealed that transiently expressed movement protein (MP), but not coat protein, of CLBV was targeted by selective autophagy for degradation. Moreover, we identified that CLBV MP directly interacted with NbATG8C1 and NbATG8i, the isoforms of autophagy-related protein 8 (ATG8), which are key factors that usually bind cargo receptors for selective autophagy. Our results present a novel example in which autophagy specifically targets a viral MP to limit the intercellular spread of the virus in plants.
Collapse
Affiliation(s)
- Erbo Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Huan Liu
- School of Modern Agriculture and Biotechnology, Ankang University, Ankang 725000, China;
| | - Hongsheng Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Lian Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| | - Ida Bagus Andika
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Liying Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (E.N.); (H.Z.); (L.L.)
| |
Collapse
|
14
|
Chen S, Han X, Yang L, Li Q, Shi Y, Li H, Chen L, Sun B, Shi Y, Yang X. Identification and functional analyses of host factors interacting with the 17-kDa protein of Barley yellow dwarf virus-GAV. Sci Rep 2021; 11:8453. [PMID: 33875710 PMCID: PMC8055683 DOI: 10.1038/s41598-021-87836-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/30/2021] [Indexed: 11/21/2022] Open
Abstract
Barley yellow dwarf viruses (BYDVs) cause significant economic losses on barley, wheat, and oats worldwide. 17-kDa protein (17K) of BYDVs plays a key role in viral infection in plants, whereas the underlying regulation mechanism of 17K in virus infection remains elusive. In this study, we determined that 17K of BYDV-GAV, the most common species found in China in recent years, was involved in viral pathogenicity. To identify the host factors interacting with 17K, the full length coding sequence of 17K was cloned into pGBKT7 to generate the bait plasmid pGBKT7-17K. 114 positive clones were identified as possible host factors to interact with 17K through screening a tobacco cDNA library. Gene ontology enrichment analysis showed that they were classified into 35 functional groups, involving three main categories including biological processes (BP), cellular components (CC), and molecular functions (MF). Kyoto Encyclopedia of Genes and Genome (KEGG) analysis indicated the acquired genes were assigned to 49 KEGG pathways. The majority of these genes were involved in glyoxylate and dicarboxylate metabolism, carbon fixation in photosynthetic organisms, and glycolysis/gluconeogenesis. The interactions between 17K and the 27 proteins with well-documented annotations were verified by conducting yeast two-hybrid assays and 12 of the 27 proteins were verified to interact with 17K. To explore the putative function of the 12 proteins in BYDV-GAV infection, the subcellular localization and expression alterations in the presence of BYDV-GAV were monitored. The results showed that, under the condition of BYDV-GAV infection, RuBisCo, POR, and PPD5 were significantly up-regulated, whereas AEP and CAT1 were significantly down-regulated. Our findings provide insights into the 17K-mediated BYDV-GAV infection process.
Collapse
Affiliation(s)
- Siyu Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyu Han
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Lingling Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qinglun Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yajuan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Honglian Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Linlin Chen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Bingjian Sun
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yan Shi
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Xue Yang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
15
|
Kumar G, Dasgupta I. Variability, Functions and Interactions of Plant Virus Movement Proteins: What Do We Know So Far? Microorganisms 2021; 9:microorganisms9040695. [PMID: 33801711 PMCID: PMC8066623 DOI: 10.3390/microorganisms9040695] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
Of the various proteins encoded by plant viruses, one of the most interesting is the movement protein (MP). MPs are unique to plant viruses and show surprising structural and functional variability while maintaining their core function, which is to facilitate the intercellular transport of viruses or viral nucleoprotein complexes. MPs interact with components of the intercellular channels, the plasmodesmata (PD), modifying their size exclusion limits and thus allowing larger particles, including virions, to pass through. The interaction of MPs with the components of PD, the formation of transport complexes and the recruitment of host cellular components have all revealed different facets of their functions. Multitasking is an inherent property of most viral proteins, and MPs are no exception. Some MPs carry out multitasking, which includes gene silencing suppression, viral replication and modulation of host protein turnover machinery. This review brings together the current knowledge on MPs, focusing on their structural variability, various functions and interactions with host proteins.
Collapse
|
16
|
Jin H, Du Z, Zhang Y, Antal J, Xia Z, Wang Y, Gao Y, Zhao X, Han X, Cheng Y, Shen Q, Zhang K, Elder RE, Benko Z, Fenyvuesvolgyi C, Li G, Rebello D, Li J, Bao S, Zhao RY, Wang D. A distinct class of plant and animal viral proteins that disrupt mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. SCIENCE ADVANCES 2020; 6:eaba3418. [PMID: 32426509 PMCID: PMC7220342 DOI: 10.1126/sciadv.aba3418] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/04/2020] [Indexed: 06/11/2023]
Abstract
Many animal viral proteins, e.g., Vpr of HIV-1, disrupt host mitosis by directly interrupting the mitotic entry switch Wee1-Cdc25-Cdk1. However, it is unknown whether plant viruses may use this mechanism in their pathogenesis. Here, we report that the 17K protein, encoded by barley yellow dwarf viruses and related poleroviruses, delays G2/M transition and disrupts mitosis in both host (barley) and nonhost (fission yeast, Arabidopsis thaliana, and tobacco) cells through interrupting the function of Wee1-Cdc25-CDKA/Cdc2 via direct protein-protein interactions and alteration of CDKA/Cdc2 phosphorylation. When ectopically expressed, 17K disrupts the mitosis of cultured human cells, and HIV-1 Vpr inhibits plant cell growth. Furthermore, 17K and Vpr share similar secondary structural feature and common amino acid residues required for interacting with plant CDKA. Thus, our work reveals a distinct class of mitosis regulators that are conserved between plant and animal viruses and play active roles in viral pathogenesis.
Collapse
Affiliation(s)
- Huaibing Jin
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiqiang Du
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Judit Antal
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zongliang Xia
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yang Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoge Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyun Han
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yanjun Cheng
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qianhua Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Robert E. Elder
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Zsigmond Benko
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Csaba Fenyvuesvolgyi
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
| | - Ge Li
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dionne Rebello
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jing Li
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shilai Bao
- State Key Laboratory of Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Richard Y. Zhao
- Children’s Memorial Institute for Education and Research, Northwestern University Feinberg School of Medicine, Chicago, IL 60614, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Microbiology and Immunology, Institute of Human Virology, and Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Daowen Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Agronomy and State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
17
|
Orfanidou CG, Mathioudakis MM, Katsarou K, Livieratos I, Katis N, Maliogka VI. Cucurbit chlorotic yellows virus p22 is a suppressor of local RNA silencing. Arch Virol 2019; 164:2747-2759. [PMID: 31502079 DOI: 10.1007/s00705-019-04391-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 08/04/2019] [Indexed: 01/20/2023]
Abstract
RNA silencing is a major antiviral mechanism in plants, which is counteracted by virus-encoded proteins with silencing suppression activity. ORFs encoding putative silencing suppressor proteins that share no structural or sequence homology have been identified in the genomes of four criniviruses. In this study, we investigated the RNA silencing suppression activity of several proteins encoded by the RNA1 (RdRp, p22) and RNA2 (CP, CPm and p26) of cucurbit chlorotic yellows virus (CCYV) using co-agroinfiltration assays on Nicotiana benthamiana plants. Our results indicate that p22 is a suppressor of local RNA silencing that does not interfere with cell-to-cell movement of the RNA silencing signal or with systemic silencing. Furthermore, comparisons of the suppression activity of CCYV p22 with that of two other well-known crinivirus suppressors (CYSDV p25 and ToCV p22) revealed that CCYV p22 is a weaker suppressor of local RNA silencing than the other two proteins. Finally, a comparative sequence analysis of the p22 genes of seven Greek CCYV isolates was performed, revealing a high level of conservation. Taken together, our research advances our knowledge about plant-virus interactions of criniviruses, an emergent group of pathogens that threatens global agriculture.
Collapse
Affiliation(s)
- Chrysoula G Orfanidou
- Plant Pathology Laboratory, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece
| | - Matthaios M Mathioudakis
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, 73100, Chania, Greece
- Institute for Olive tree, Subtropical crops and Viticulture, Plant Pathology Laboratory, Hellenic Agricultural Organization-"DEMETER", Karamanlis Ave. 167, 73134, Chania, Greece
| | | | - Ioannis Livieratos
- Department of Sustainable Agriculture, Mediterranean Agronomic Institute of Chania, Alsylio Agrokepio, 73100, Chania, Greece
| | - Nikolaos Katis
- Plant Pathology Laboratory, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece
| | - Varvara I Maliogka
- Plant Pathology Laboratory, Faculty of Agriculture, Forestry and Natural Environment, School of Agriculture, Aristotle University of Thessaloniki, 54 124, Thessaloniki, Greece.
| |
Collapse
|
18
|
Byrne MJ, Steele JFC, Hesketh EL, Walden M, Thompson RF, Lomonossoff GP, Ranson NA. Combining Transient Expression and Cryo-EM to Obtain High-Resolution Structures of Luteovirid Particles. Structure 2019; 27:1761-1770.e3. [PMID: 31611039 PMCID: PMC6899511 DOI: 10.1016/j.str.2019.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 09/20/2019] [Indexed: 02/03/2023]
Abstract
The Luteoviridae are pathogenic plant viruses responsible for significant crop losses worldwide. They infect a wide range of food crops, including cereals, legumes, cucurbits, sugar beet, sugarcane, and potato and, as such, are a major threat to global food security. Viral replication is strictly limited to the plant vasculature, and this phloem limitation, coupled with the need for aphid transmission of virus particles, has made it difficult to generate virus in the quantities needed for high-resolution structural studies. Here, we exploit recent advances in heterologous expression in plants to produce sufficient quantities of virus-like particles for structural studies. We have determined their structures to high resolution by cryoelectron microscopy, providing the molecular-level insight required to rationally interrogate luteovirid capsid formation and aphid transmission, thereby providing a platform for the development of preventive agrochemicals for this important family of plant viruses.
Collapse
Affiliation(s)
- Matthew J Byrne
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - John F C Steele
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Emma L Hesketh
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Miriam Walden
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK
| | - Rebecca F Thompson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - George P Lomonossoff
- Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, UK.
| | - Neil A Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular & Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
19
|
Lenz O, Sarkisová T, Koloniuk I, Fránová J, Přibylová J, Špak J. Red clover-associated luteovirus – a newly classifiable member of the genus Luteovirus with an enamo-like P5 protein. Arch Virol 2018; 163:3439-3442. [DOI: 10.1007/s00705-018-3997-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/09/2018] [Indexed: 10/28/2022]
|
20
|
Tomato Spotted Wilt Virus NSs Protein Supports Infection and Systemic Movement of a Potyvirus and Is a Symptom Determinant. Viruses 2018. [PMID: 29538326 PMCID: PMC5869522 DOI: 10.3390/v10030129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plant viruses are inducers and targets of antiviral RNA silencing. To condition susceptibility, most plant viruses encode silencing suppressor proteins that interfere with antiviral RNA silencing. The NSs protein is an RNA silencing suppressor in orthotospoviruses, such as the tomato spotted wilt virus (TSWV). The mechanism of RNA silencing suppression by NSs and its role in virus infection and movement are poorly understood. Here, we cloned and tagged TSWV NSs and expressed it from a GFP-tagged turnip mosaic virus (TuMV-GFP) carrying either a wild-type or suppressor-deficient (AS9) helper component proteinase (HC-Pro). When expressed in cis, NSs restored pathogenicity and promoted systemic infection of suppressor-deficient TuMV-AS9-GFP in Nicotiana benthamiana and Arabidopsis thaliana. Inactivating mutations were introduced in NSs RNA-binding domain one. A genetic analysis with active and suppressor-deficient NSs, in combination with wild-type and mutant plants lacking essential components of the RNA silencing machinery, showed that the NSs insert is stable when expressed from a potyvirus. NSs can functionally replace potyviral HC-Pro, condition virus susceptibility, and promote systemic infection and symptom development by suppressing antiviral RNA silencing through a mechanism that partially overlaps that of potyviral HC-Pro. The results presented provide new insight into the mechanism of silencing suppression by NSs and its effect on virus infection.
Collapse
|