1
|
de Pablo-Maiso L, Echeverría I, Rius-Rocabert S, Luján L, Garcin D, de Andrés D, Nistal-Villán E, Reina R. Sendai Virus, a Strong Inducer of Anti-Lentiviral State in Ovine Cells. Vaccines (Basel) 2020; 8:vaccines8020206. [PMID: 32365702 PMCID: PMC7349755 DOI: 10.3390/vaccines8020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 11/16/2022] Open
Abstract
Small ruminant lentiviruses (SRLVs) are widely spread in the ovine and caprine populations, causing an incurable disease affecting animal health and production. Vaccine development is hindered owing to the high genetic heterogeneity of lentiviruses and the selection of T-cell and antibody escape mutants, requiring antigen delivery optimization. Sendai virus (SeV) is a respiratory paramyxovirus in mice that has been recognized as a potent inducer of innate immune responses in several species, including mouse and human. The aim of this study was to stimulate an innate antiviral response in ovine cells and evaluate the potential inhibitory effect upon small ruminant lentivirus (SRLV) infections. Ovine alveolar macrophages (AMs), blood-derived macrophages (BDMs), and skin fibroblasts (OSFs) were stimulated through infection with SeV encoding green fluorescent protein (GFP). SeV efficiently infected ovine cells, inducing an antiviral state in AM from SRLV naturally-infected animals, as well as in in vitro SRLV-infected BDM and OSF from non-infected animals. Supernatants from SeV-infected AM induced an antiviral state when transferred to fresh cells challenged with SRLV. Similar to SRLV, infectivity of an HIV-1-GFP lentiviral vector was also restricted in ovine cells infected with SeV. In myeloid cells, an M1-like proinflammatory polarization was observed together with an APOBEC3Z1 induction, among other lentiviral restriction factors. Our observations may boost new approximations in ameliorating the SRLV burden by stimulation of the innate immune response using SeV-based vaccine vectors.
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
| | - Irache Echeverría
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
| | - Sergio Rius-Rocabert
- Microbiology Section, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain; (S.R.-R.); (E.N.-V.)
- CEMBIO (Centre for Metabolomics and Bioanalysis), Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain
| | - Lluís Luján
- Department of Animal Pathology, University of Zaragoza, 50013 Zaragoza, Spain;
| | - Dominique Garcin
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland;
| | - Damián de Andrés
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
| | - Estanislao Nistal-Villán
- Microbiology Section, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU San Pablo, CEU Universities, Boadilla del Monte, 28668 Madrid, Spain; (S.R.-R.); (E.N.-V.)
- Instituto de Medicina Molecular Aplicada (IMMA), Universidad CEU San Pablo, Pablo-CEU, CEU Universities, Boadilla del Monte, 28003 Madrid, Spain
| | - Ramsés Reina
- Department of Animal Health, Institute of Agrobiotechnology (CSIC-Government of Navarra), 31192 Mutilva, Navarra, Spain; (L.d.P.-M.); (I.E.); (D.d.A.)
- Correspondence:
| |
Collapse
|
2
|
de Pablo-Maiso L, Doménech A, Echeverría I, Gómez-Arrebola C, de Andrés D, Rosati S, Gómez-Lucia E, Reina R. Prospects in Innate Immune Responses as Potential Control Strategies against Non-Primate Lentiviruses. Viruses 2018; 10:v10080435. [PMID: 30126090 PMCID: PMC6116218 DOI: 10.3390/v10080435] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
Lentiviruses are infectious agents of a number of animal species, including sheep, goats, horses, monkeys, cows, and cats, in addition to humans. As in the human case, the host immune response fails to control the establishment of chronic persistent infection that finally leads to a specific disease development. Despite intensive research on the development of lentivirus vaccines, it is still not clear which immune responses can protect against infection. Viral mutations resulting in escape from T-cell or antibody-mediated responses are the basis of the immune failure to control the infection. The innate immune response provides the first line of defense against viral infections in an antigen-independent manner. Antiviral innate responses are conducted by dendritic cells, macrophages, and natural killer cells, often targeted by lentiviruses, and intrinsic antiviral mechanisms exerted by all cells. Intrinsic responses depend on the recognition of the viral pathogen-associated molecular patterns (PAMPs) by pathogen recognition receptors (PRRs), and the signaling cascades leading to an antiviral state by inducing the expression of antiviral proteins, including restriction factors. This review describes the latest advances on innate immunity related to the infection by animal lentiviruses, centered on small ruminant lentiviruses (SRLV), equine infectious anemia virus (EIAV), and feline (FIV) and bovine immunodeficiency viruses (BIV), specifically focusing on the antiviral role of the major restriction factors described thus far.
Collapse
MESH Headings
- Animals
- Cats
- Cattle
- Dendritic Cells/immunology
- Dendritic Cells/virology
- Gene Expression Regulation/immunology
- Goats
- Horses
- Immunity, Innate
- Immunodeficiency Virus, Bovine/immunology
- Immunodeficiency Virus, Bovine/pathogenicity
- Immunodeficiency Virus, Feline/immunology
- Immunodeficiency Virus, Feline/pathogenicity
- Infectious Anemia Virus, Equine/immunology
- Infectious Anemia Virus, Equine/pathogenicity
- Interferon Regulatory Factors/genetics
- Interferon Regulatory Factors/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/virology
- Lentivirus Infections/genetics
- Lentivirus Infections/immunology
- Lentivirus Infections/virology
- Macrophages/immunology
- Macrophages/virology
- Pathogen-Associated Molecular Pattern Molecules/immunology
- Receptors, Pattern Recognition/genetics
- Receptors, Pattern Recognition/immunology
- Sheep
- T-Lymphocytes/immunology
- T-Lymphocytes/virology
Collapse
Affiliation(s)
- Lorena de Pablo-Maiso
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Ana Doménech
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Irache Echeverría
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Carmen Gómez-Arrebola
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Damián de Andrés
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| | - Sergio Rosati
- Malattie Infettive degli Animali Domestici, Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Torino 10095, Italy.
| | - Esperanza Gómez-Lucia
- Dpto. Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid 28040, Spain.
| | - Ramsés Reina
- Instituto de Agrobiotecnología (IdAB), UPNA-CSIC-Gobierno de Navarra, Navarra 31192, Spain.
| |
Collapse
|
3
|
Karponi G, Kritas S, Petridou E, Papanikolaou E. Efficient Transduction and Expansion of Ovine Macrophages for Gene Therapy Implementations. Vet Sci 2018; 5:vetsci5020057. [PMID: 29912168 PMCID: PMC6024765 DOI: 10.3390/vetsci5020057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/05/2018] [Accepted: 06/14/2018] [Indexed: 02/08/2023] Open
Abstract
A number of bacteria provoking zoonotic diseases present intracellular survival and a host cell tropism limited to the monocyte/macrophage lineage. Thus, infection is rendered difficult to eradicate, causing chronic inflammatory reactions to the host and widespread prevalence. Although self-inactivating lentiviral vectors have been successfully tested in the clinic against virally-induced human infectious diseases, little is known about the transduction susceptibility of ruminant animal phagocytes that play a critical role in the outbreak of zoonotic diseases such as brucellosis. In view of the development of a lentiviral vector-based platform targeting and inactivating specific genetic features of intracellular bacteria, we have tested the transducibility of ovine macrophages in terms of transgene expression and vector copy number (VCN). We show that ovine macrophages are relatively resistant to transduction even at a high multiplicity of infection with a conventional lentiviral vector expressing the green fluorescence protein and that addition of transduction enhancers, such as polybrene, increases transgene expression even after a one-week culture of the transduced cells in vitro. Overall, we demonstrate that ovine macrophages may be efficiently expanded and transduced in culture, thus providing the benchmark for gene therapy applications for zoonotic diseases.
Collapse
Affiliation(s)
- Garyfalia Karponi
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Spyridon Kritas
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Evanthia Petridou
- Laboratory of Microbiology and Infectious Diseases, Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| | - Eleni Papanikolaou
- Laboratory of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens 11527, Greece.
| |
Collapse
|
4
|
Gomez-Lucia E, Barquero N, Domenech A. Maedi-Visna virus: current perspectives. VETERINARY MEDICINE-RESEARCH AND REPORTS 2018; 9:11-21. [PMID: 30050863 PMCID: PMC6042483 DOI: 10.2147/vmrr.s136705] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Maedi-Visna virus (MVV) and caprine arthritis-encephalitis virus are commonly known as small ruminant lentiviruses (SRLVs) due to their genetic, structural, and pathogenic similarities. They produce lifelong lasting infections in their hosts, which are characterized by slow progression till overt disease happens. There are four major clinical forms derived from a chronic inflammatory response due to the constant low grade production of viruses from monocyte-derived macrophages: respiratory (caused by interstitial pneumonia), mammary (which may produce a decrease in milk production due to subclinical mastitis), joint (characterized by lameness), and neurological (characterized by chronic nonpurulent meningoencephalomyelitis). There are three levels which try to eliminate the virus: cellular, body, and the flock level. However, SRLVs have ways to counteract these defenses. This review examines some of them.
Collapse
Affiliation(s)
- Esperanza Gomez-Lucia
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain,
| | - Nuria Barquero
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain,
| | - Ana Domenech
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University, Madrid, Spain,
| |
Collapse
|