1
|
Cai X, Xu L. Human Papillomavirus-Related Cancer Vaccine Strategies. Vaccines (Basel) 2024; 12:1291. [PMID: 39591193 PMCID: PMC11598756 DOI: 10.3390/vaccines12111291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Human papillomavirus (HPV) persistent infection is a major pathogenic factor for HPV-related cancers, such as cervical cancer (CC), vaginal cancer, vulvar cancer, anal cancer, penile cancer, and head and neck cancer (HNC). Since the introduction of the world's first prophylactic HPV vaccine, there has been a decline in the incidence of HPV infections and associated cancers. This article reviews the latest literature on the research progress, efficacy, and safety of HPV vaccines for these cancers, providing a reference for HPV vaccination strategy. METHODS By utilizing databases such as PubMed, Google Scholar, CNKI, and Wanfang, we conducted a literature search on research papers related to HPV vaccines from 2014 to 2024, employing keywords such as "HPV", "HPV vaccine", "CC", "vaginal cancer", "vulvar cancer", "anal cancer", "penile cancer" and "HNC". Additionally, we reviewed the latest information available on official websites, including the World Health Organization (WHO). Based on the quality and relevance of the papers, we selected over 100 of the most representative articles for further summarization and analysis. RESULTS Vaccination against HPV can effectively block the transmission of the virus and prevent HPV-related cancers. Current studies have confirmed the efficacy and safety of prophylactic HPV vaccination. However, numerous challenges remain. The global vaccination rate for preventive vaccines remains low, particularly in low- and middle-income countries. Nonetheless, in the future, we can enhance the accessibility, affordability, and coverage of HPV vaccines by expanding the indications of already licensed vaccines, continuously developing new vaccines. CONCLUSIONS The HPV vaccine is an extremely effective measure for the prevention and treatment of HPV-related cancers. Although there are many challenges in expanding the coverage of the HPV vaccine. It is believed that in the not-too-distant future, both prophylactic and therapeutic HPV vaccines will achieve commendable results.
Collapse
Affiliation(s)
| | - Ling Xu
- Department of Gynaecology, Minhang Hospital, Fudan University, Shanghai 201199, China;
| |
Collapse
|
2
|
Wang Y, Chen F, Qu W, Gong Y, Wang Y, Chen L, Zhou Q, Mo J, Zhang H, Lin L, Bi T, Wang X, Gu J, Li Y, Sui L. Alternative splicing in the genome of HPV and its regulation. Front Cell Infect Microbiol 2024; 14:1443868. [PMID: 39502170 PMCID: PMC11534716 DOI: 10.3389/fcimb.2024.1443868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Persistent infection with high-risk human papillomavirus (HR-HPV) is the main cause of cervical cancer. These chronic infections are characterized by high expression of the HPV E6 and E7 oncogenes and the absence of the L1 and L2 capsid proteins. The regulation of HPV gene expression plays a crucial role in both the viral life cycle and rare oncogenic events. Alternative splicing of HPV mRNA is a key mechanism in post-transcriptional regulation. Through alternative splicing, HPV mRNA is diversified into various splice isoforms with distinct coding potentials, encoding multiple proteins and influencing the expression of HPV genes. The spliced mRNAs derived from a donor splicing site within the E6 ORF and one of the different acceptor sites located in the early mRNA contain E6 truncated mRNAs, named E6*. E6* is one of the extensively studied splicing isoforms. However, the role of E6* proteins in cancer progression remains controversial. Here, we reviewed and compared the alternative splicing events occurring in the genomes of HR-HPV and LR-HPV. Recently, new HPV alternative splicing regulatory proteins have been continuously discovered, and we have updated the regulation of HPV alternative splicing. In addition, we summarized the functions of known splice isoforms from three aspects: anti-tumorigenic, tumorigenic, and other cancer-related functions, including not only E6*, but also E6^E7, E8^E2, and so on. Comprehending their contributions to cancer development enhances insights into the carcinogenic mechanisms of HPV and explores the potential utility of alternative splicing in the diagnosis and treatment of cervical cancer.
Collapse
Affiliation(s)
- Yaping Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Fang Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Wenjie Qu
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingxin Gong
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yan Wang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Limei Chen
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Qi Zhou
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Jiayin Mo
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Hongwei Zhang
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Lin Lin
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Tianyi Bi
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Xujie Wang
- Department of Obstetrics and Gynecology, Shanghai Changning Maternity and Infant Health Hospital, Shanghai, China
| | - Jiashi Gu
- Department of Obstetrics and Gynecology, Shanghai Pudong Hospital of Fudan University, Shanghai, China
| | - Yanyun Li
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Long Sui
- Department of Gynecology and Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
3
|
López-Codony V, de Andrés-Pablo Á, Ferrando-Díez A, Fernández-Montolí ME, López-Querol M, Tous S, Ortega-Expósito C, Torrejón-Becerra JC, Pérez Y, Ferrer-Artola A, Sole-Sedeno JM, Grau C, Rupérez B, Saumoy M, Sánchez M, Peremiquel-Trillas P, Bruni L, Alemany L, Bosch FX, Pavón MA. Assessing the reduction of viral infectivity in HPV16/18-positive women after one, two, and three doses of Gardasil-9 (RIFT): Study protocol. PLoS One 2024; 19:e0304080. [PMID: 38768231 PMCID: PMC11104652 DOI: 10.1371/journal.pone.0304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Human Papillomavirus (HPV) prophylactic vaccination has proven effective in preventing new infections, but it does not treat existing HPV infections or associated diseases. Hence, there is still an important reservoir of HPV in adults, as vaccination programs are mainly focused on young women. The primary objective of this non-randomized, open-label trial is to evaluate if a 3-dose regimen of Gardasil-9 in HPV16/18-positive women could reduce the infective capacity of their body fluids. We aim to assess if vaccine-induced antibodies could neutralize virions present in the mucosa, thus preventing the release of infective particles and HPV transmission to sexual partners. As our main endpoint, the E1^E4-HaCaT model will be used to assess the infectivity rate of cervical, anal and oral samples, obtained from women before and after vaccination. HPV DNA positivity, virion production, seroconversion, and the presence of antibodies in the exudates, will be evaluated to attribute infectivity reduction to vaccination. Our study will recruit two different cohorts (RIFT-HPV1 and RIFT-HPV2) of non-vaccinated adult women. RIFT-HPV1 will include subjects with an HPV16/18 positive cervical test and no apparent cervical lesions or cervical lesions eligible for conservative treatment. RIFT-HPV2 will include subjects with an HPV16/18 positive anal test and no apparent anal lesions or anal lesions eligible for conservative treatment, as well as women with an HPV16/18 positive cervical test and HPV-associated vulvar lesions. Subjects complying with inclusion criteria for both cohorts will be recruited to the main cohort, RIFT-HPV1. Three doses of Gardasil-9 will be administered intramuscularly at visit 1 (0 months), visit 2 (2 months) and visit 3 (6 months). Even though prophylactic HPV vaccines would not eliminate a pre-existing infection, our results will determine if HPV vaccination could be considered as a new complementary strategy to prevent HPV-associated diseases by reducing viral spread. Trial registration: https://clinicaltrials.gov/ct2/show/NCT05334706.
Collapse
MESH Headings
- Adolescent
- Adult
- Female
- Humans
- Young Adult
- Antibodies, Viral/immunology
- Cervix Uteri/virology
- DNA, Viral
- Human papillomavirus 16/immunology
- Human papillomavirus 18/immunology
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/administration & dosage
- Human Papillomavirus Recombinant Vaccine Quadrivalent, Types 6, 11, 16, 18/immunology
- Papillomavirus Infections/prevention & control
- Papillomavirus Infections/virology
- Papillomavirus Infections/immunology
- Papillomavirus Vaccines/administration & dosage
- Papillomavirus Vaccines/immunology
- Vaccination/methods
- Clinical Trials as Topic
- Evaluation Studies as Topic
Collapse
Affiliation(s)
- Victoria López-Codony
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona (UB), Barcelona, Spain
| | - Álvaro de Andrés-Pablo
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona (UB), Barcelona, Spain
| | - Angelica Ferrando-Díez
- Medical Oncology Department, Catalan Institute of Oncology, Germans Trias i Pujol University Hospital (HGTiP), Badalona, Barcelona, Spain
| | | | - Marta López-Querol
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Tous
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Carlos Ortega-Expósito
- Department of Gynaecology, Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona, Spain
| | | | - Yolanda Pérez
- Department of Gynaecology, Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Ferrer-Artola
- Bellvitge Biomedical Research Institute (IDIBELL), Pharmacy Unit, Bellvitge University Hospital (HUB), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Josep Maria Sole-Sedeno
- Department of Obstetrics and Gynaecology, Hospital del Mar–Mar Health Park, Barcelona, Spain
| | - Clara Grau
- Sexual and Reproductive Health Care Center–ASSIR, Delta del Llobregat, Barcelona, Spain
| | - Blas Rupérez
- Sexual and Reproductive Health Care Center–ASSIR, Delta del Llobregat, Barcelona, Spain
| | - Maria Saumoy
- HIV and STD Unit, Bellvitge University Hospital (HUB), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Mónica Sánchez
- HIV and STD Unit, Bellvitge University Hospital (HUB), Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Paula Peremiquel-Trillas
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Programa de Doctorat en Biomedicina, Universitat de Barcelona (UB), Barcelona, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Laia Bruni
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Laia Alemany
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Francesc Xavier Bosch
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Faculty of Health Sciences, Open University of Catalonia (UOC), Barcelona, Spain
| | - Miquel Angel Pavón
- Catalan Institute of Oncology, Bellvitge Biomedical Research Institute (IDIBELL), Cancer Epidemiology Research Programme, L’Hospitalet de Llobregat, Barcelona, Spain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP), Madrid, Spain
| |
Collapse
|
4
|
Zheng LL, Zheng LY, Chen C, Wang YT, Chen SF, Zhong QQ, Zhang Y, Li X. High-risk human papillomavirus distribution in different cytological classification women. Microbes Infect 2023; 25:105214. [PMID: 37666475 DOI: 10.1016/j.micinf.2023.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/26/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
High-risk human papillomavirus (HR-HPV) infection is a major cause of infection-related cancer worldwide. 3101 HR-HPV-positive females were retrospectively analyzed and grouped using the cervical cytological screening (ThinPrep cytological test, TCT) evaluations combined with colposcopy. The HPV16 infection rate is the highest in all groups. HPV16 was the most frequent in each group, with significant differences between the four groups (χ2 = 23.41, P = 0.0001). The distribution of HPV16 and HPV33 correlated with the pathologic stage in each group. The mixed infection rate of mRNA testing differs significantly between groups (P < 0.01, χ2 = 17.44, P = 0.002). HR-HPV infection duration of less than six months accounted for 87.65%, 6 and 12 months of persistent infection (28.28%), and more than one year of continuous infection accounted for only 16.48%. The top three HPV types in a group with a duration of more than 12 months were HPV52 (3.03%), HPV16 (2.55%), and HPV39 (1.58%). The least clearance types were HPV39 (63.48%), 56 (69.54%), and 52 (71.44%) more than 12 months. This study revealed the region's primary pathogenic subtypes on different cervical lesions and provided the basis for diagnosing and treating HPV infection.
Collapse
Affiliation(s)
- Li-Li Zheng
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| | - Li-Yuan Zheng
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, 266071, China
| | - Chao Chen
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Yi-Ting Wang
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Shuang-Feng Chen
- Central Laboratory of Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China
| | - Qian-Qian Zhong
- Department of Clinical Laboratory, Liaocheng City Dongchangfu District Maternal and Child Health Hospital, Liaocheng, 252000, Shandong, China
| | - Yan Zhang
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| | - Xue Li
- Department of Gynecology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, China.
| |
Collapse
|
5
|
Genetic variability of the HPV16 early genes and LCR. Present and future perspectives. Expert Rev Mol Med 2021; 23:e19. [PMID: 34847982 DOI: 10.1017/erm.2021.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human papillomavirus 16 (HPV16) infection is the aetiologic factor for the development of cervical dysplasia and is regarded as highly carcinogen, because it is implicated in more than 50% of cervical cancer cases, worldwide. The tumourigenic potential of HPV16 has triggered the extensive sequence analysis of viral genome in order to identify nucleotide variations and amino acid substitutions that influence viral oncogenicity and subsequently the initiation and progression of cervical cancer. Nowadays, specific mutations of HPV16 DNA have been associated with an increased risk of high-grade squamous intraepithelial lesions and invasive cervical cancer (ICC) development, including E6: Q14H, H78Y, L83V, Ε7: N29S, S63F, E2: H35Q, P219S, T310K, E5: I65V, whereas highly conserved regions of viral DNA have been extensively characterised. In addition, numerous novel HPV16 mutations are observed among the studied populations from various geographic regions, hence advocating that different HPV16 strains seem to emerge with different tumourigenic capacities. The present review focuses on the variability of the early genes and the long control region, emphasising on the association of specific mutations with the development of severe dysplasia. Finally, it evaluates whether specific regions of HPV16 DNA are able to serve as valuable biomarkers for cervical cancer risk.
Collapse
|
6
|
Anti-Retroviral Protease Inhibitors Regulate Human Papillomavirus 16 Infection of Primary Oral and Cervical Epithelium. Cancers (Basel) 2020; 12:cancers12092664. [PMID: 32961945 PMCID: PMC7563395 DOI: 10.3390/cancers12092664] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/20/2022] Open
Abstract
Simple Summary In 2016, globally, 36.7 million people were living with Human Immunodeficiency Virus (HIV), of which 53% had access to anti-retroviral therapy (ART) (UNAIDS 2017 Global HIV Statistics). The risk of Human Papillomavirus (HPV) associated oropharyngeal, cervical and anal cancers are higher among patients infected with HIV in the era of ART. Generally, HPV infections are self-limiting, however, persistent HPV infection is a major risk to carcinogenic progression. Long intervals between initial infection and cancer development imply cofactors are involved. Co-factors that increase infectivity, viral load, and persistence increase risk of cancer. We propose that the ART Protease Inhibitors (PI) class of drugs are novel co-factors that regulate HPV infection in HIV-infected patients. We developed a model system of organotypic epithelium to study impact of PI treatment on HPV16 infection. Our model could be used to study mechanisms of HPV infection in context of ART, and for developing drugs that minimize HPV infections. Abstract Epidemiology studies suggest that Human Immunodeficiency Virus (HIV)-infected patients on highly active anti-retroviral therapy (HAART) may be at increased risk of acquiring opportunistic Human Papillomavirus (HPV) infections and developing oral and cervical cancers. Effective HAART usage has improved survival but increased the risk for HPV-associated cancers. In this manuscript, we report that Protease Inhibitors (PI) treatment of three-dimensional tissues derived from primary human gingiva and cervical epithelial cells compromised cell-cell junctions within stratified epithelium and enhanced paracellular permeability of HPV16 to the basal layer for infection, culminating in de novo biosynthesis of progeny HPV16 as determined using 5-Bromo-2′-deoxyuridine (BrdU) labeling of newly synthesized genomes. We propose that HAART/PI represent a novel class of co-factors that modulate HPV infection of the target epithelium. Our in vitro tissue culture model is an important tool to study the mechanistic role of anti-retroviral drugs in promoting HPV infections in HAART-naïve primary epithelium. Changes in subsequent viral load could promote new infections, create HPV reservoirs that increase virus persistence, and increase the risk of oral and cervical cancer development in HIV-positive patients undergoing long-term HAART treatment.
Collapse
|
7
|
Shiraz A, Crawford R, Egawa N, Griffin H, Doorbar J. The early detection of cervical cancer. The current and changing landscape of cervical disease detection. Cytopathology 2020; 31:258-270. [PMID: 32301535 DOI: 10.1111/cyt.12835] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 01/04/2023]
Abstract
Cervical cancer prevention has undergone dramatic changes over the past decade. With the introduction of human papillomavirus (HPV) vaccination, some countries have seen a dramatic decline in HPV-mediated cervical disease. However, widespread implementation has been limited by economic considerations and the varying healthcare priorities of different countries, as well as by vaccine availability and, in some instances, vaccine hesitancy amongst the population/government. In this environment, it is clear that cervical screening will retain a critical role in the prevention of cervical cancer and will in due course need to adapt to the changing incidence of HPV-associated neoplasia. Cervical screening has, for many years, been performed using Papanicolaou staining of cytology samples. As our understanding of the role of HPV in cervical cancer progression has advanced, and with the availability of sensitive detection systems, cervical screening now incorporates HPV testing. Although such tests improve disease detection, they are not specific, and cannot discriminate high-grade from low-grade disease. This has necessitated the development of effective triage approaches to stratify HPV-positive women according to their risk of cancer progression. Although cytology triage remains the mainstay of screening, novel strategies under evaluation include DNA methylation, biomarker detection and the incorporation of artificial intelligence systems to detect cervical abnormalities. These tests, which can be partially anchored in a molecular understanding of HPV pathogenesis, will enhance the sensitivity of disease detection and improve patient outcomes. This review will provide insight on these innovative methodologies while explaining their scientific basis drawing from our understanding of HPV tumour biology.
Collapse
Affiliation(s)
- Aslam Shiraz
- Department of Pathology, University of Cambridge, Cambridge, UK
- Department of Gynae-Oncology, Addenbrookes Hospital, Cambridge, UK
| | - Robin Crawford
- Department of Gynae-Oncology, Addenbrookes Hospital, Cambridge, UK
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Heather Griffin
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
8
|
The Role of Ataxia Telangiectasia Mutant and Rad3-Related DNA Damage Response in Pathogenesis of Human Papillomavirus. Pathogens 2020; 9:pathogens9060506. [PMID: 32585979 PMCID: PMC7350315 DOI: 10.3390/pathogens9060506] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Human papillomavirus (HPV) infection leads to a variety of benign lesions and malignant tumors such as cervical cancer and head and neck squamous cell carcinoma. Several HPV vaccines have been developed that can help to prevent cervical carcinoma, but these vaccines are only effective in individuals with no prior HPV infection. Thus, it is still important to understand the HPV life cycle and in particular the association of HPV with human pathogenesis. HPV production requires activation of the DNA damage response (DDR), which is a complex signaling network composed of multiple sensors, mediators, transducers, and effectors that safeguard cellular DNAs to maintain the host genome integrity. In this review, we focus on the roles of the ataxia telangiectasia mutant and Rad3-related (ATR) DNA damage response in HPV DNA replication. HPV can induce ATR expression and activate the ATR pathway. Inhibition of the ATR pathway results in suppression of HPV genome maintenance and amplification. The mechanisms underlying this could be through various molecular pathways such as checkpoint signaling and transcriptional regulation. In light of these findings, other downstream mechanisms of the ATR pathway need to be further investigated for better understanding HPV pathogenesis and developing novel ATR DDR-related inhibitors against HPV infection.
Collapse
|
9
|
Baba S, Taguchi A, Kawata A, Hara K, Eguchi S, Mori M, Adachi K, Mori S, Iwata T, Mitsuhashi A, Maeda D, Komatsu A, Nagamatsu T, Oda K, Kukimoto I, Osuga Y, Fujii T, Kawana K. Differential expression of human papillomavirus 16-, 18-, 52-, and 58-derived transcripts in cervical intraepithelial neoplasia. Virol J 2020; 17:32. [PMID: 32143682 PMCID: PMC7060624 DOI: 10.1186/s12985-020-01306-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/26/2020] [Indexed: 12/22/2022] Open
Abstract
Background Human papillomavirus (HPV) infection is a primary cause of cervical cancer. Although epidemiologic study revealed that carcinogenic risk differs according to HPV genotypes, the expression patterns of HPV-derived transcripts and their dependence on HPV genotypes have not yet been fully elucidated. Methods In this study, 382 patients with abnormal cervical cytology were enrolled to assess the associations between HPV-derived transcripts and cervical intraepithelial neoplasia (CIN) grades and/or HPV genotypes. Specifically, four HPV-derived transcripts, namely, oncogenes E6 and E6*, E1^E4, and viral capsid protein L1 in four major HPV genotypes—HPV 16, 18, 52, and 58—were investigated. Results The detection rate of E6/E6* increased with CIN progression, whereas there was no significant change in the detection rate of E1^E4 or L1 among CIN grades. In addition, we found that L1 gene expression was HPV type-dependent. Almost all HPV 52-positive specimens, approximately 50% of HPV 58-positive specimens, around 33% of HPV 16-positive specimens, and only one HPV18-positive specimen expressed L1. Conclusions We demonstrated that HPV-derived transcripts are HPV genotype-dependent. Especially, expression patterns of L1 gene expression might reflect HPV genotype-dependent patterns of carcinogenesis.
Collapse
Affiliation(s)
- Satoshi Baba
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ayumi Taguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. .,Department of Gynecology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan.
| | - Akira Kawata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Konan Hara
- Department of Public Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Satoko Eguchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mayuyo Mori
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsuyuki Adachi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Mori
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takashi Iwata
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo, Japan
| | - Akira Mitsuhashi
- Department of Reproductive Medicine, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Daichi Maeda
- Department of Cellular and Organ Pathology, Graduate School of Medicine, Akita University, Akita, Japan.,Department of Clinical Genomics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Atsushi Komatsu
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Iwao Kukimoto
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
White EA. Manipulation of Epithelial Differentiation by HPV Oncoproteins. Viruses 2019; 11:v11040369. [PMID: 31013597 PMCID: PMC6549445 DOI: 10.3390/v11040369] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/18/2019] [Accepted: 04/20/2019] [Indexed: 02/06/2023] Open
Abstract
Papillomaviruses replicate and cause disease in stratified squamous epithelia. Epithelial differentiation is essential for the progression of papillomavirus replication, but differentiation is also impaired by papillomavirus-encoded proteins. The papillomavirus E6 and E7 oncoproteins partially inhibit and/or delay epithelial differentiation and some of the mechanisms by which they do so are beginning to be defined. This review will outline the key features of the relationship between HPV infection and differentiation and will summarize the data indicating that papillomaviruses alter epithelial differentiation. It will describe what is known so far and will highlight open questions about the differentiation-inhibitory mechanisms employed by the papillomaviruses.
Collapse
Affiliation(s)
- Elizabeth A White
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|