1
|
Lv Z, Zhang X, Zhao K, Du L, Wang X, Chu Y, Huang T. Co-immunization with DNA vaccines encoding yidR and IL-17 augments host immune response against Klebsiella pneumoniae infection in mouse model. Virulence 2024; 15:2345019. [PMID: 38656137 PMCID: PMC11057650 DOI: 10.1080/21505594.2024.2345019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Klebsiella pneumoniae is an important gram-negative bacterium that causes severe respiratory and healthcare-associated infections. Although antibiotic therapy is applied to treat severe infections caused by K. pneumoniae, drug-resistant isolates pose a huge challenge to clinical practices owing to adverse reactions and the mismanagement of antibiotics. Several studies have attempted to develop vaccines against K. pneumoniae, but there are no licensed vaccines available for the control of K. pneumoniae infection. In the current study, we constructed a novel DNA vaccine, pVAX1-YidR, which encodes a highly conserved virulence factor YidR and a recombinant expression plasmid pVAX1-IL-17 encoding Interleukin-17 (IL-17) as a molecular adjuvant. Adaptive immune responses were assessed in immunized mice to compare the immunogenicity of the different vaccine schemes. The results showed that the targeted antigen gene was expressed in HEK293T cells using an immunofluorescence assay. Mice immunized with pVAX1-YidR elicited a high level of antibodies, induced strong cellular immune responses, and protected mice from K. pneumoniae challenge. Notably, co-immunization with pVAX1-YidR and pVAX1-IL-17 significantly augmented host adaptive immune responses and provided better protection against K. pneumoniae infections in vaccinated mice. Our study demonstrates that combined DNA vaccines and molecular adjuvants is a promising strategy to develop efficacious antibacterial vaccines against K. pneumoniae infections.
Collapse
Affiliation(s)
- Zheng Lv
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Xuan Zhang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Kelei Zhao
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Lianming Du
- Institute for Advanced Study, Chengdu University, Chengdu, China
| | - Xinrong Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Yiwen Chu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
| | - Ting Huang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, School of pharmacy, Chengdu University, Chengdu, China
- Antiinfective Agent Creation Engineering Research Centre of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, China
| |
Collapse
|
2
|
Guo Y, Liu K, Yang X, Lv Z, Zhao K, Wang X, Chu Y, Li J, Huang T. Multi-omics-based characterization of the influences of Mycobacterium tuberculosis virulence factors EsxB and PPE68 on host cells. Arch Microbiol 2023; 205:230. [PMID: 37162591 PMCID: PMC10170423 DOI: 10.1007/s00203-023-03576-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/11/2023]
Abstract
Mycobacterium tuberculosis, the ancient master of causing tuberculosis, is one of the most successful pathogens capable of persistently colonizing host lungs. The EsxB (CFP-10) of ESX-1 system and PPE68 of the PPE family contribute to the virulence of M. tuberculosis. However, the virulence potential and pathogenetic characteristics of these two proteins during M. tuberculosis infection remain unclear. In this study, two prokaryotic expression plasmids for EsxB or PPE68 of M. tuberculosis were constructed and the recombinant proteins His-EsxB or His-PPE68 were purified. The proteome and transcriptome of MH-S cells treated with His-EsxB or His-PPE68 were explored, followed by validating the expression of the identified differentially expressed genes (DEGs) using quantitative PCR. A total of 159/439 specific proteins or 633/1117 DEGs were obtained between control and His-EsxB or His-PPE68 treated groups in the MH-S proteomes and transcriptomes. Additionally, 37/60 signal pathways were predicted in the His-EsxB or His-PPE68 treated groups and "Cytokine-cytokine receptor interaction" was the most represented pathway. Furthermore, the expression of the DEGs (IL-1β, IL-6, and TNF-α) was significantly upregulated, suggesting that these DEGs contributed to the host response during EsxB or PPE68 treatment. These findings provide detailed information on developing an effective intervention strategy to control M. tuberculosis infection.
Collapse
Affiliation(s)
- Yidong Guo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Kanghua Liu
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, 610064, Chengdu, People's Republic of China
| | - Xiting Yang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Zheng Lv
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Kelei Zhao
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Xinrong Wang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Yiwen Chu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China
| | - Jing Li
- Key Laboratory of Bio-Resources and Eco-Environment (Ministry of Education), College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, 610064, Chengdu, People's Republic of China.
| | - Ting Huang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, School of Pharmacy, Chengdu University, No. 2025 Chengluo Avenue, 610106, Chengdu, People's Republic of China.
| |
Collapse
|
3
|
Beikzadeh B, Ashrafi Tamai I, Zahraei Salehi T. Construction of live-attenuated Trueperella pyogenes by antibiotic treatment and sequential passage: methods for vaccine development. Arch Microbiol 2023; 205:147. [PMID: 36973450 PMCID: PMC10042400 DOI: 10.1007/s00203-023-03481-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/11/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023]
Abstract
Trueperella pyogenes (T. pyogenes) is a zoonotic pathogen that is cause a variety of pyogenic diseases in animals. The complex pathogenicity and various virulence factors are important challenges to produce an effective vaccine. According to previous trials, inactivated whole-cell bacteria or recombinant vaccines were unsuccessful in preventing disease. Thus, this study aims to introduce a new vaccine candidate based on a live-attenuated platform. For this purpose, first T. pyogenes was subjected to sequential passage (SP) and antibiotic treatment (AT) to lose their pathogenicity. Second, Plo and fimA expressions as virulence genes were evaluated by qPCR and then mice were challenged with bacteria from SP and AT culture by intraperitoneal route. Compared to the control group (T. pyogenes-wild type), plo and fimA gene expressions were downregulated and vaccinated mice have a normal spleen appearance in contrast to the control group. In addition, there was no significant difference between bacterial count from spleen, liver, heart and peritoneal fluid in vaccinated mice and the control group. In conclusion, this study introduces a new T. pyogenes vaccine candidate based on a live-attenuated strategy that mimics natural infection without pathogenicity for further investigation on vaccines against T. pyogenes infections.
Collapse
Affiliation(s)
- Babak Beikzadeh
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Sciences and Technology, University of Isfahan, Isfahan, Iran
| | - Iradj Ashrafi Tamai
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Taghi Zahraei Salehi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Recent Advances in DNA Vaccines against Lung Cancer: A Mini Review. Vaccines (Basel) 2022; 10:vaccines10101586. [PMID: 36298450 PMCID: PMC9612219 DOI: 10.3390/vaccines10101586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/17/2022] Open
Abstract
Lung cancer is regarded as the major causes of patient death around the world. Although the novel tumor immunotherapy has made great progress in the past decades, such as utilizing immune checkpoint inhibitors or oncolytic viruses, the overall 5-year survival of patients with lung cancers is still low. Thus, development of effective vaccines to treat lung cancer is urgently required. In this regard, DNA vaccines are now considered as a promising immunotherapy strategy to activate the host immune system against lung cancer. DNA vaccines are able to induce both effective humoral and cellular immune responses, and they possess several potential advantages such as greater stability, higher safety, and being easier to manufacture compared to conventional vaccination. In the present review, we provide a global overview of the mechanism of cancer DNA vaccines and summarize the innovative neoantigens, delivery platforms, and adjuvants in lung cancer that have been investigated or approved. Importantly, we highlight the recent advance of clinical studies in the field of lung cancer DNA vaccine, focusing on their safety and efficacy, which might accelerate the personalized design of DNA vaccine against lung cancer.
Collapse
|