1
|
Arnecke AL, Schwarz S, Lübke-Becker A, Jensen KC, Bahramsoltani M. A Survey on Companion Animal Owners' Perception of Veterinarians' Communication About Zoonoses and Antimicrobial Resistance in Germany. Animals (Basel) 2024; 14:3346. [PMID: 39595398 PMCID: PMC11590884 DOI: 10.3390/ani14223346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
The intimate bonds between humans and their pets create favourable conditions that support the mutual transmission of pathogens in either direction. In this context, veterinarians are essential in informing and educating pet owners about health risks linked to zoonotic pathogens and antimicrobial resistance (AMR). To effectively convey this information, veterinarians should have strong communication skills. To gather insights on pet ownership, veterinary consultations, and risk communication, an online questionnaire was used to survey dog and cat owners in Germany. The survey evaluated the frequency and perception of communication concerning zoonotic pathogens and AMR, deriving a communication score. The findings showed that pet owners rated veterinarian communication with a high average score, reflecting a high satisfaction level. The longer pet owners had been clients, the more frequently they received information on zoonoses and AMR, and the better they rated the communication. However, the results also indicated that the amount of information on zoonoses and/or AMR provided by veterinarians was still lower than desired by pet owners. Risk factors, including pathogen detection, vulnerable individuals, owning imported animals, and feeding them raw meat, fish, offal, or uncooked bones, were regularly present. These findings underscore the critical role of risk communication in preventing zoonoses and AMR.
Collapse
Affiliation(s)
- Amelie Lisa Arnecke
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195 Berlin, Germany; (A.L.A.); (M.B.)
- Institute of Veterinary Pathology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 33, 04103 Leipzig, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany;
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 8, 14163 Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, School of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 7, 14163 Berlin, Germany;
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Robert-von-Ostertag-Straße 8, 14163 Berlin, Germany
| | - Katharina Charlotte Jensen
- Institute for Veterinary Epidemiology and Biostatistics, School of Veterinary Medicine, Freie Universität Berlin, Königsweg 67, 14163 Berlin, Germany;
| | - Mahtab Bahramsoltani
- Institute of Veterinary Anatomy, School of Veterinary Medicine, Freie Universität Berlin, Koserstraße 20, 14195 Berlin, Germany; (A.L.A.); (M.B.)
| |
Collapse
|
2
|
Yang XY, Huang JS, Gong QL, Sun JM, Li YJ, Liu B, Zhang YM, Shi CW, Yang GL, Yang WT, Wang CF. SARS-CoV-2 prevalence in wildlife 2020-2022: a worldwide systematic review and meta-analysis. Microbes Infect 2024; 26:105350. [PMID: 38723999 DOI: 10.1016/j.micinf.2024.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
The widespread transmission of SARS-CoV-2 in humans poses a serious threat to public health security, and a growing number of studies have discovered that SARS-CoV-2 infection in wildlife and mutate over time. This article mainly reports the first systematic review and meta-analysis of the prevalence of SARS-CoV-2 in wildlife. The pooled prevalence of the 29 included articles was calculated by us using a random effects model (22.9%) with a high heterogeneity (I2 = 98.7%, p = 0.00). Subgroup analysis and univariate regression analysis found potential risk factors contributing to heterogeneity were country, wildlife species, sample type, longitude, and precipitation. In addition, the prevalence of SARS-CoV-2 in wildlife increased gradually over time. Consequently, it is necessary to comprehensively analyze the risk factors of SARS-CoV-2 infection in wildlife and develop effective control policies, as well as to monitor the mutation of SARS-CoV-2 in wildlife at all times to reduce the risk of SARS-CoV-2 transmission among different species.
Collapse
Affiliation(s)
- Xue-Yao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing-Shu Huang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Qing-Long Gong
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jin-Mei Sun
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yan-Jin Li
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Bing Liu
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Yu-Meng Zhang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Provincial Key Laboratory of Animal Microecology and Healthy Breeding, Engineering Research Center of Microecological Vaccines (Drugs) for Major Animal Diseases, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
3
|
Leandri M, Dalmas L. One Health Economics: why and how economics should take on the interdisciplinary challenges of a promising public health paradigm. Front Public Health 2024; 12:1379176. [PMID: 38883196 PMCID: PMC11177617 DOI: 10.3389/fpubh.2024.1379176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 06/18/2024] Open
Abstract
In this perspective paper, we argue that Economics could and should contribute to the development and implementation of the One Health approach currently emerging as a relevant interdisciplinary framework to address present and future infectious diseases. We show how proven tools from Health and Environmental Economics, such as burden evaluation, can be extended to fit the One Health multisectoral perspective. This global health framework could also benefit significantly from Economics to design efficient schemes for prevention and disease control. In return, adapting Economics to the challenges of One Health issues could pave the way for exciting developments in the Economics discipline itself, across many subfields.
Collapse
Affiliation(s)
- Marc Leandri
- UMI SOURCE, Université Paris-Saclay, UVSQ, IRD, Guyancourt, France
| | - Laurent Dalmas
- UMI SOURCE, Université Paris-Saclay, UVSQ, IRD, Guyancourt, France
| |
Collapse
|
4
|
Bonilla-Aldana DK, Jiménez-Diaz SD, Lozada-Riascos C, Silva-Cajaleon K, Rodríguez-Morales AJ. Mapping Bovine Tuberculosis in Colombia, 2001-2019. Vet Sci 2024; 11:220. [PMID: 38787192 PMCID: PMC11125619 DOI: 10.3390/vetsci11050220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
INTRODUCTION Bovine tuberculosis is a zoonotic disease of significant impact, particularly in countries where a pastoral economy is predominant. Despite its importance, few studies have analysed the disease's behaviour in Colombia, and none have developed maps using geographic information systems (GIS) to characterise it; as such, we developed this study to describe the temporal-spatial distribution of bovine tuberculosis in Colombia over a period of 19 years. METHODS A retrospective cross-sectional descriptive study, based on reports by the Colombian Agricultural Institute (ICA), surveillance of tuberculosis on cattle farms in Colombia from 2001 to 2019 was carried out. The data were converted into databases using Microsoft Access 365®, and multiple epidemiological maps were generated with the QGIS® version 3.36 software coupled to shape files of all the country's departments. RESULTS During the study period, 5273 bovine tuberculosis cases were identified in multiple different departments of Colombia (with a mean of 278 cases/year). Regarding its temporal distribution, the number of cases varied from a maximum of 903 cases (17.12% of the total) in 2015 to a minimum of 0 between 2001 and 2004 and between 2017 and 2019 (between 2005 and 2016, the minimum was 46 cases, 0.87%). CONCLUSIONS GIS are essential for understanding the temporospatial behaviour of zoonotic diseases in Colombia, as is the case for bovine tuberculosis, with its potential implications for the Human and One Health approaches.
Collapse
Affiliation(s)
| | - S. Daniela Jiménez-Diaz
- Grupo Colaborativo de Investigación en Enfermedades Transmitidas por Vectores, Zoonóticas y Tropicales de Risaralda (GETZ), Pereira, Risaralda 660001, Colombia;
| | | | - Kenneth Silva-Cajaleon
- Faculty of Environmental Sciences and Health Sciences, Universidad Científica del Sur, Lima 15307, Peru; (K.S.-C.); (A.J.R.-M.)
| | - Alfonso J. Rodríguez-Morales
- Faculty of Environmental Sciences and Health Sciences, Universidad Científica del Sur, Lima 15307, Peru; (K.S.-C.); (A.J.R.-M.)
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Risaralda 660003, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut P.O. Box 36-5053, Lebanon
| |
Collapse
|
5
|
Robi DT, Bogale A, Temteme S, Aleme M, Urge B. Adoption of veterinary vaccines, determining factors, and barriers in Southwest Ethiopia: Implications for livestock health and disease management strategies. Prev Vet Med 2024; 225:106143. [PMID: 38387228 DOI: 10.1016/j.prevetmed.2024.106143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/26/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024]
Abstract
In Ethiopia, the use of veterinary vaccines to control animal diseases is an effective strategy. A study conducted in Southwest Ethiopia from October 2020 to October 2021 aimed to determine the adoption level of veterinary vaccines and factors affecting their use. The study used multistage random sampling to select districts and interviewed 476 farmers who had either adopted or not adopted the vaccines. The study found that certain diseases should be prioritized for vaccination to safeguard the health of cattle, sheep, goats, and poultry. These include anthrax (19.12 %), blackleg (17.65 %), foot and mouth disease (10.50 %), and lumpy skin disease (8.82 %) in cattle, and pasteurellosis (18.07 %), contagious caprine pleuropneumonia (15.97 %), peste des petits ruminants (14.15 %), and Orf (13.45 %) in sheep and goats. Newcastle disease (21.85 %), infectious bursal disease (19.33 %), and coccidiosis (17.02 %) were identified as high-priority diseases for flock health. Overall, 30.7 % of farmers were adopters of veterinary vaccines, while 69.3 % were non-adopters. The study identified several factors that influence the likelihood of adopting veterinary vaccines, including breed type (OR = 9.1, p < 0.0001), production size (OR = 9.7, p < 0.0001), production type (OR = 2.7, p < 0.0001), and farm location (OR = 9.8, p = 0.001). Common barriers to vaccination included a lack of disease knowledge, high vaccine costs, limited vaccine availability, and administration difficulties. Insights from the study can guide strategies for promoting veterinary vaccine adoption in Ethiopia. Stakeholders should pay attention to these findings since vaccine use is crucial for controlling animal diseases, enhancing animal health, and preventing economic losses. Further research is needed to investigate factors affecting enhanced veterinary vaccine adoption.
Collapse
Affiliation(s)
- Dereje Tulu Robi
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia.
| | - Ararsa Bogale
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| | - Shiferaw Temteme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Melkam Aleme
- Ethiopian Institute of Agricultural Research, Tepi Agricultural Research Center, P.O Box: 34, Tepi, Ethiopia
| | - Beksisa Urge
- Ethiopian Institute of Agricultural Research, Holeta Agricultural Research Center, P.O. Box 2003, Holeta, Ethiopia
| |
Collapse
|
6
|
Majiwa H, Bukachi SA, Omia D, Fèvre EM. Knowledge, perceptions, and practices around zoonotic diseases among actors in the livestock trade in the Lake Victoria crescent ecosystem in East Africa. Front Public Health 2024; 11:1199664. [PMID: 38264255 PMCID: PMC10805025 DOI: 10.3389/fpubh.2023.1199664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/19/2023] [Indexed: 01/25/2024] Open
Abstract
Background Zoonotic diseases such as anthrax, rabies, brucellosis, and Rift Valley fever pose a direct threat to health and undercut livelihoods in the communities in which they occur. A combination of anthropogenic and animal activities like migration and interaction with wildlife and their respective parasites and vectors drives the emergence and re-emergence of zoonotic diseases. Consequently, One Health interdisciplinary approaches that incorporate social scientists can provide key insights into complex local perceptions. The approach calls for collaboration between the human and animal health sectors, including the sharing of disease surveillance data necessary to alleviate disease impacts. Livestock traders interact closely with livestock, which puts them at elevated risk of infection and creates conditions by which they may spread zoonotic disease. It is thus essential to examine practices among actors involved in the livestock trade to understand the most appropriate ways to mitigate these risks. Methods A qualitative study was conducted among the actors in the livestock trade in Busia County on their knowledge and perceptions of zoonotic diseases and practices that may contribute to the spread, control, and prevention of zoonotic disease transmission. A thematic analysis framework was used to categorize and synthesize data from in-depth interviews (IDIs), key informant interviews (KIIs), and structured observations. Results Whereas participants could list livestock diseases, they could not identify which ones were zoonoses, demonstrating insufficient knowledge of zoonosis. They identify sick animals by checking for dropped ears, excess mucus production, diarrhea, bloody urinal discharge, and general animal activity levels. To prevent the spread of these diseases, they wash their animals, isolate sick animals from the rest of the stock, and vaccinate their animals. They seek help from animal health professionals for sick animals as part of curative practices. This shows that they perceive the diseases as serious and that they need to be attended to by professionals. The results also show that they perceive animals from outside the region to be more vulnerable to diseases compared to those from within. The actors in the livestock trade engage in practices like skinning dead animals before burying them; to them, this is a normal practice. Some also consume dead carcasses. These increase the risk of zoonotic disease transmission. Conclusion The actors involved in the livestock trade are critical in the prevention and elimination of zoonotic diseases; hence, they need to be involved when developing intervention programs and policies for animal health extension services. Training them as a continuum of animal health workers blends lay and professional knowledge, which, alongside their intense contact with large numbers of animals, becomes a critical disease surveillance tool. Increasing awareness of zoonoses by using multi-disciplinary teams with social scientists is urgently needed so that practices like skinning dead animals before disposing of them and consumption of dead carcasses can be minimized.
Collapse
Affiliation(s)
- Hamilton Majiwa
- Institute of Anthropology Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Salome A. Bukachi
- Institute of Anthropology Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Dalmas Omia
- Institute of Anthropology Gender and African Studies, University of Nairobi, Nairobi, Kenya
| | - Eric M. Fèvre
- International Livestock Research Institute, Nairobi, Kenya
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Neston, United Kingdom
| |
Collapse
|
7
|
Feng X, Liu Y, Zhao Y, Sun Z, Xu N, Zhao C, Xia W. Recombinase Polymerase Amplification-Based Biosensors for Rapid Zoonoses Screening. Int J Nanomedicine 2023; 18:6311-6331. [PMID: 37954459 PMCID: PMC10637217 DOI: 10.2147/ijn.s434197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/21/2023] [Indexed: 11/14/2023] Open
Abstract
Recent, outbreaks of new emergency zoonotic diseases have prompted an urgent need to develop fast, accurate, and portable screening assays for pathogen infections. Recombinase polymerase amplification (RPA) is sensitive and specific and can be conducted at a constant low temperature with a short response time, making it especially suitable for on-site screening and making it a powerful tool for preventing or controlling the spread of zoonoses. This review summarizes the design principles of RPA-based biosensors as well as various signal output or readout technologies involved in fluorescence detection, lateral flow assays, enzymatic catalytic reactions, spectroscopic techniques, electrochemical techniques, chemiluminescence, nanopore sequencing technologies, microfluidic digital RPA, and clustered regularly interspaced short palindromic repeats/CRISPR-associated systems. The current status and prospects of the application of RPA-based biosensors in zoonoses screening are highlighted. RPA-based biosensors demonstrate the advantages of rapid response, easy-to-read result output, and easy implementation for on-site detection, enabling development toward greater portability, automation, and miniaturization. Although there are still problems such as high cost with unstable signal output, RPA-based biosensors are increasingly becoming one of the most important means of on-site pathogen screening in complex samples involving environmental, water, food, animal, and human samples for controlling the spread of zoonotic diseases.
Collapse
Affiliation(s)
- Xinrui Feng
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- Medical College, Yanbian University, Yanji, 136200, People’s Republic of China
| | - Yan Liu
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Yang Zhao
- Department of Emergency and Intensive Medicine, No. 965 Hospital of PLA Joint Logistic Support Force, Jilin, 132013, People’s Republic of China
| | - Zhe Sun
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| | - Ning Xu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Chen Zhao
- College of Public Health, Jilin Medical University, Jilin, 132013, People’s Republic of China
| | - Wei Xia
- College of Medical Technology, Beihua University, Jilin, 132013, People’s Republic of China
| |
Collapse
|
8
|
Pickering B, Manzano-Román R, Tikoo SK, Chevalier C, Archambault D. Editorial: New-generation vaccines and novel vaccinal strategies against infectious diseases of livestock, wild and companion animals. Front Immunol 2023; 14:1256363. [PMID: 37600777 PMCID: PMC10433904 DOI: 10.3389/fimmu.2023.1256363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/22/2023] Open
Affiliation(s)
- Brad Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Suresh Kumar Tikoo
- Vaccinology & Immunotherapeutics Program School of Public Health, and VIDO, University of Saskatchewan, Saskatoon SK, Canada
| | - Christophe Chevalier
- INRAE, UVSQ, UMR892 VIM, Equipe Influenza Virus, Université Paris‐Saclay, Jouy‐en‐Josas, France
| | - Denis Archambault
- Department of Biological Sciences, University of Quebec at Montreal, Montreal, QC, Canada
| |
Collapse
|
9
|
Akache B, Read AJ, Dudani R, Harrison BA, Williams D, Deschatelets L, Jia Y, Chandan V, Stark FC, Agbayani G, Makinen SR, Hemraz UD, Lam E, Régnier S, Zou W, Kirkland PD, McCluskie MJ. Sulfated Lactosyl Archaeol Archaeosome-Adjuvanted Vaccine Formulations Targeting Rabbit Hemorrhagic Disease Virus Are Immunogenic and Efficacious. Vaccines (Basel) 2023; 11:1043. [PMID: 37376432 DOI: 10.3390/vaccines11061043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Vaccines play an important role in maintaining human and animal health worldwide. There is continued demand for effective and safe adjuvants capable of enhancing antigen-specific responses to a target pathogen. Rabbit hemorrhagic disease virus (RHDV) is a highly contagious calicivirus that often induces high mortality rates in rabbits. Herein, we evaluated the activity of an experimental sulfated lactosyl archaeol (SLA) archaeosome adjuvant when incorporated in subunit vaccine formulations targeting RHDV. The subunit antigens consisted of RHDV-CRM197 peptide conjugates or recombinant RHDV2 VP60. SLA was able to enhance antigen-specific antibody titers and cellular responses in mice and rabbits. Three weeks following immunization, antigen-specific antibody levels in rabbits vaccinated with RHDV2 VP60 + SLA were significantly higher than those immunized with antigen alone, with geomean titers of 7393 vs. 117. In addition, the SLA-adjuvanted VP60-based formulations were highly efficacious in a rabbit RHDV2 challenge model with up to 87.5% animals surviving the viral challenge. These findings demonstrate the potential utility of SLA adjuvants in veterinary applications and highlight its activity in different types of mammalian species.
Collapse
Affiliation(s)
- Bassel Akache
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Andrew J Read
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Renu Dudani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Blair A Harrison
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Dean Williams
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Lise Deschatelets
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Yimei Jia
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Vandana Chandan
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Felicity C Stark
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Gerard Agbayani
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Shawn R Makinen
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Usha D Hemraz
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Edmond Lam
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Sophie Régnier
- National Research Council Canada, Aquatic and Crop Resource Development, Montreal, QC H4P 2R2, Canada
| | - Wei Zou
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| | - Peter D Kirkland
- Virology Laboratory, Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW 2567, Australia
| | - Michael J McCluskie
- National Research Council Canada, Human Health Therapeutics, Ottawa, ON K1A 0R6, Canada
| |
Collapse
|
10
|
Cataldo C, Bellenghi M, Masella R, Busani L. One Health challenges and actions: Integration of gender considerations to reduce risks at the human-animal-environmental interface. One Health 2023; 16:100530. [PMID: 37089529 PMCID: PMC10114509 DOI: 10.1016/j.onehlt.2023.100530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/23/2023] [Accepted: 03/26/2023] [Indexed: 04/03/2023] Open
Abstract
The human-animal-environment interface is where the emergence of new infectious diseases can occur as a result of many complex reasons, including its alteration due to intensive farming and agriculture, increased human encroachment into wildlife habitats, international travel networks, and urbanization. The One Health approach to zoonoses is a holistic approach that considers environmental sustainability, animal health, and human health together. Gender-specific social and domestic roles can modulate (increase or decrease) an individual's risk of exposure to various hazards, including infectious diseases and zoonoses. The two scenarios presented here, one on avian influenza and the other on leptospirosis, clearly highlight the influence of gender, demonstrating that women's roles at the human-animal-environment interface are not the same as men's. Integrating the gender aspect into cross-sectoral interventions defined according to the One Health perspective could help reduce the risks of exposure to infections for humans and animals and the possible consequent economic losses. We suggest supplementing the One Health perspective with a gender analysis to study the influence of social norms, activities and risk behavior on exposure to infections, chemical pollution and the consequences of climate change.
Collapse
|
11
|
Lawhon SD, Burbick CR, Munson E, Zapp A, Thelen E, Villaflor M. Update on Novel Taxa and Revised Taxonomic Status of Bacteria Isolated from Nondomestic Animals Described in 2018 to 2021. J Clin Microbiol 2023; 61:e0142522. [PMID: 36533958 PMCID: PMC9945507 DOI: 10.1128/jcm.01425-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Revisions and new additions to bacterial taxonomy can have a significant widespread impact on clinical practice, infectious disease epidemiology, veterinary microbiology laboratory operations, and wildlife conservation efforts. The expansion of genome sequencing technologies has revolutionized our knowledge of the microbiota of humans, animals, and insects. Here, we address novel taxonomy and nomenclature revisions of veterinary significance that impact bacteria isolated from nondomestic wildlife, with emphasis being placed on bacteria that are associated with disease in their hosts or were isolated from host animal species that are culturally significant, are a target of conservation efforts, or serve as reservoirs for human pathogens.
Collapse
Affiliation(s)
- Sara D. Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Claire R. Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Amanda Zapp
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Elizabeth Thelen
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Maia Villaflor
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|