1
|
Leyva-Grado VH, Promeneur D, Agans KN, Lazaro GG, Borisevich V, Deer DJ, Luckay A, Egan M, Dimitrov AS, Small B, Broder CC, Cross RW, Hamm S, Geisbert TW. Establishing an immune correlate of protection for Nipah virus in nonhuman primates. NPJ Vaccines 2024; 9:244. [PMID: 39702562 DOI: 10.1038/s41541-024-01036-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/20/2024] [Indexed: 12/21/2024] Open
Abstract
The limited but recurrent outbreaks of the zoonotic Nipah virus (NiV) infection in humans, its high fatality rate, and the potential virus transmission from human to human make NiV a concerning threat with pandemic potential. There are no licensed vaccines to prevent infection and disease. A recombinant Hendra virus soluble G glycoprotein vaccine (HeV-sG-V) candidate was recently tested in a Phase I clinical trial. Because NiV outbreaks are sporadic, and with a few cases, licensing will likely require an alternate regulatory licensing pathway. Therefore, determining a reliable vaccine correlate of protection (CoP) will be critical. We assessed the immune responses elicited by HeV-sG-V in African Green monkeys and its relationship with protection from a NiV challenge. Data revealed values of specific binding and neutralizing antibody titers that predicted survival and allowed us to establish a mechanistic CoP for NiV Bangladesh and Malaysia strains.
Collapse
Affiliation(s)
| | | | - K N Agans
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | - V Borisevich
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - D J Deer
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - A Luckay
- Auro Vaccines LLC, Pearl River, NY, USA
| | - M Egan
- Auro Vaccines LLC, Pearl River, NY, USA
| | - A S Dimitrov
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - B Small
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - C C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, USA
| | - R W Cross
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - S Hamm
- Auro Vaccines LLC, Pearl River, NY, USA
| | - T W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
2
|
Ebisine K, Quist D, Findlay-Wilson S, Kennedy E, Dowall S. A Review of Nonhuman Primate Models of Rift Valley Fever Virus Infection: Progress, Challenge Strains, and Future Directions. Pathogens 2024; 13:856. [PMID: 39452727 PMCID: PMC11510021 DOI: 10.3390/pathogens13100856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral disease that primarily affects animals, especially ruminants, but has the capacity to infect humans and result in outbreaks. Infection with the causative agent, RVF virus (RVFV), causes severe disease in domestic animals, especially sheep, resulting in fever, anorexia, immobility, abortion, and high morbidity and mortality rates in neonate animals. Humans become infected through exposure to infected animals and, less frequently, directly via a mosquito bite. A greater awareness of RVFV and its epidemic potential has resulted in increased investment in the development of interventions, especially vaccines. There is currently no substitute for the use of animal models in order to evaluate these vaccines. As outbreaks of RVF disease are difficult to predict or model, conducting Phase III clinical trials will likely not be feasible. Therefore, representative animal model systems are essential for establishing efficacy data to support licensure. Nonhuman primate (NHP) species are often chosen due to their closeness to humans, reflecting similar susceptibility and disease kinetics. This review covers the use of NHP models in RVFV research, with much of the work having been conducted in rhesus macaques and common marmosets. The future direction of RVF work conducted in NHP is discussed in anticipation of the importance of it being a key element in the development and approval of a human vaccine.
Collapse
Affiliation(s)
| | | | | | | | - Stuart Dowall
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK; (K.E.); (D.Q.); (S.F.-W.); (E.K.)
| |
Collapse
|
3
|
Skerritt JH, Tucek-Szabo C, Sutton B, Nolan T. The Platform Technology Approach to mRNA Product Development and Regulation. Vaccines (Basel) 2024; 12:528. [PMID: 38793779 PMCID: PMC11126020 DOI: 10.3390/vaccines12050528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
mRNA-lipid nanoparticle (LNP) medicinal products can be considered a platform technology because the development process is similar for different diseases and conditions, with similar noncoding mRNA sequences and lipid nanoparticles and essentially unchanged manufacturing and analytical methods often utilised for different products. It is critical not to lose the momentum built using the platform approach during the development, regulatory approval and rollout of vaccines for SARS-CoV-2 and its variants. This review proposes a set of modifications to existing regulatory requirements for mRNA products, based on a platform perspective for quality, manufacturing, preclinical, and clinical data. For the first time, we address development and potential regulatory requirements when the mRNA sequences and LNP composition vary in different products as well. In addition, we propose considerations for self-amplifying mRNA, individualised oncology mRNA products, and mRNA therapeutics. Providing a predictable development pathway for academic and commercial groups so that they can know in detail what product characterisation and data are required to develop a dossier for regulatory submission has many potential benefits. These include: reduced development and regulatory costs; faster consumer/patient access and more agile development of products in the face of pandemics; and for rare diseases where alternatives may not exist or to increase survival and the quality of life in cancer patients. Therefore, achieving consensus around platform approaches is both urgent and important. This approach with mRNA can be a template for similar platform frameworks for other therapeutics and vaccines to enable more efficient development and regulatory review.
Collapse
Affiliation(s)
- John H. Skerritt
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
| | | | - Brett Sutton
- CSIRO Health and Biosecurity, Research Way, Clayton, VIC 3168, Australia;
| | - Terry Nolan
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, VIC 3010, Australia;
- Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St, Melbourne, VIC 3000, Australia
| |
Collapse
|
4
|
Berry N, Mee ET, Almond N, Rose NJ. The Impact and Effects of Host Immunogenetics on Infectious Disease Studies Using Non-Human Primates in Biomedical Research. Microorganisms 2024; 12:155. [PMID: 38257982 PMCID: PMC10818626 DOI: 10.3390/microorganisms12010155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Understanding infectious disease pathogenesis and evaluating novel candidate treatment interventions for human use frequently requires prior or parallel analysis in animal model systems. While rodent species are frequently applied in such studies, there are situations where non-human primate (NHP) species are advantageous or required. These include studies of animals that are anatomically more akin to humans, where there is a need to interrogate the complexity of more advanced biological systems or simply reflect susceptibility to a specific infectious agent. The contribution of different arms of the immune response may be addressed in a variety of NHP species or subspecies in specific physiological compartments. Such studies provide insights into immune repertoires not always possible from human studies. However, genetic variation in outbred NHP models may confound, or significantly impact the outcome of a particular study. Thus, host factors need to be considered when undertaking such studies. Considerable knowledge of the impact of host immunogenetics on infection dynamics was elucidated from HIV/SIV research. NHP models are now important for studies of emerging infections. They have contributed to delineating the pathogenesis of SARS-CoV-2/COVID-19, which identified differences in outcomes attributable to the selected NHP host. Moreover, their use was crucial in evaluating the immunogenicity and efficacy of vaccines against COVID-19 and establishing putative correlates of vaccine protection. More broadly, neglected or highly pathogenic emerging or re-emergent viruses may be studied in selected NHPs. These studies characterise protective immune responses following infection or the administration of candidate immunogens which may be central to the accelerated licensing of new vaccines. Here, we review selected aspects of host immunogenetics, specifically MHC background and TRIM5 polymorphism as exemplars of adaptive and innate immunity, in commonly used Old and New World host species. Understanding this variation within and between NHP species will ensure that this valuable laboratory source is used most effectively to combat established and emerging virus infections and improve human health worldwide.
Collapse
Affiliation(s)
- Neil Berry
- Research & Development—Science, Research and Innovation, Medicines and Healthcare products Regulatory Agency, South Mimms, Hertfordshire EN6 3QG, UK; (E.T.M.); (N.A.); (N.J.R.)
| | | | | | | |
Collapse
|
5
|
Graham VA, Easterbrook L, Kennedy E, Rayner E, Findlay-Wilson S, Flett L, Wise EL, Treagus S, Fotheringham S, Kempster S, Almond N, Dowall S. Pathogenesis of Rift Valley Fever Virus in a BALB/c Mouse Model Is Affected by Virus Culture Conditions and Sex of the Animals. Viruses 2023; 15:2369. [PMID: 38140610 PMCID: PMC10747589 DOI: 10.3390/v15122369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen causing disease in livestock and humans. Whilst initially restricted to the African continent, recent spread to the Arabian Peninsula has highlighted the likelihood of entry into new regions. Due to the absence of a regulatory-approved human vaccine, work is ongoing to develop and assess countermeasures. As such, small animal models play a pivotal role in providing information on disease pathogenesis and elucidating which intervention strategies confer protection. To develop and establish the BALB/c mouse model, we challenged mice with RVFV grown from two separate cell lines: one derived from mosquitoes (C6/36) and the other mammalian derived (Vero E6). Following infection, we assessed the clinical course of disease progression at days 1 and 3 post-challenge and evaluated viral tropism and immune analytes. The results demonstrated that RVFV infection was affected by the cell line used to propagate the challenge virus, with those grown in insect cells resulting in a more rapid disease progression. The lowest dose that caused uniform severe disease remained the same across both virus preparations. In addition, to demonstrate reproducibility, the lowest dose was used for a subsequent infection study using male and female animals. The results further demonstrated that male mice succumbed to infection more rapidly than their female counterparts. Our results establish an RVFV mouse model and key parameters that affect the course of disease progression in BALB/c mice.
Collapse
Affiliation(s)
- Victoria A. Graham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Linda Easterbrook
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Kennedy
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Rayner
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Stephen Findlay-Wilson
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Lucy Flett
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Emma Louise Wise
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Samantha Treagus
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Susan Fotheringham
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| | - Sarah Kempster
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, UK; (S.K.); (N.A.)
| | - Neil Almond
- Medicines and Healthcare Products Regulatory Agency (MHRA), Blanche Ln, South Mimms, Potters Bar EN6 3QG, UK; (S.K.); (N.A.)
| | - Stuart Dowall
- UK Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (V.A.G.); (L.E.); (E.K.); (E.R.); (S.F.-W.); (L.F.); (E.L.W.); (S.T.); (S.F.)
| |
Collapse
|