1
|
Neemann KA, Sato AI. Vaccinations in children with hematologic malignancies and those receiving hematopoietic stem cell transplants or cellular therapies. Transpl Infect Dis 2023; 25 Suppl 1:e14100. [PMID: 37436808 DOI: 10.1111/tid.14100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023]
Abstract
Children who are immune compromised are uniquely threatened by a higher risk of infections, including vaccine-preventable diseases (VPDs). Children who undergo chemotherapy or cellular therapies may not have preexisting immunity to VPDs at the time of their treatment including not yet receiving their primary vaccine series, and additionally they have higher risk of exposures (e.g., due to family structures, daycare and school setting) with decreased capacity to protect themselves using nonpharmaceutic measures (e.g., masking). In the past, efforts to revaccinate these children have often been delayed or incomplete. Treatment with chemotherapy, stem cell transplants, and/or cellular therapies impair the ability of the immune system to mount a robust vaccine response. Ideally, protection would be provided as soon as both safe and effective, which will vary by vaccine type (e.g., replicating versus nonreplicating; conjugated versus polysaccharide). While a single approach revaccination schedule following these therapies would be convenient for providers, it would not account for patient specific factors that influence the timing of immune reconstitution (IR). Evidence suggests that many of these children would mount a meaningful vaccine response as early as 3 months following completion of treatment. Here within, we provide updated guidance on how to approach vaccination both during and following completion of these therapies.
Collapse
Affiliation(s)
- Kari A Neemann
- Division of Infectious Diseases, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Children's Hospital & Medical Center, Omaha, Nebraska, USA
| | - Alice I Sato
- Division of Infectious Diseases, Department of Pediatrics, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Children's Hospital & Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Thole LML, Tóth L, Proß V, Siegle J, Stahl C, Hermsdorf G, Knabe A, Winkler A, Schrezenmeier E, Ludwig C, Eckert C, Eggert A, Schrezenmeier H, Sattler A, Schulte JH, Kotsch K. Impact of a booster dose on SARS-CoV2 mRNA vaccine-specific humoral-, B- and T cell immunity in pediatric stem cell transplant recipients. Front Immunol 2023; 14:1239519. [PMID: 37942315 PMCID: PMC10628529 DOI: 10.3389/fimmu.2023.1239519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 10/09/2023] [Indexed: 11/10/2023] Open
Abstract
Stem cell transplant recipients (SCTR) are imperiled to increased risks after SARS-CoV2 infection, supporting the need for effective vaccination strategies for this vulnerable group. With respect to pediatric patients, data on immunogenicity of SARS-CoV2 mRNA-based vaccination is limited. We therefore comprehensively examined specific humoral, B- and T cell responses in a cohort of 2-19 year old SCTR after the second and third vaccine dose. Only after booster vaccination, transplant recipients reached similar levels of vaccine-specific IgG, IgA and neutralizing antibodies against omicron variant as age-matched controls. Although frequencies of SARS-CoV2 specific B cells increased after the third dose, they were still fourfold reduced in patients compared to controls. Overall, the majority of individuals enrolled mounted SARS-CoV2 Spike protein-specific CD4+ T helper cell responses with patients showing significantly higher portions than controls after the third dose. With respect to functionality, however, SCTR were characterized by reduced frequencies of specific interferon gamma producing CD4+ T cells, along with an increase in IL-2 producers. In summary, our data identify distinct quantitative and qualitative impairments within the SARS-CoV2 vaccination specific B- and CD4+ T cell compartments. More importantly, humoral analyses highlight the need for a booster vaccination of SCTR particularly for development of neutralizing antibodies.
Collapse
Affiliation(s)
- Linda Marie Laura Thole
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura Tóth
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Vanessa Proß
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Janine Siegle
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Carolin Stahl
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Georg Hermsdorf
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annette Knabe
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Annika Winkler
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Eva Schrezenmeier
- Department of Nephrology and Medical Intensive Care, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin Institute of Health (BIH) Academy, Clinician Scientist Program Universitätsmedizin Berlin, Berlin, Germany
| | - Carolin Ludwig
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Cornelia Eckert
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelika Eggert
- Department of Pediatric Oncology and Hematology, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, Ulm University, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg – Hessen and University Hospital Ulm, Ulm, Germany
| | - Arne Sattler
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes H. Schulte
- Department of Pediatric Hematology and Oncology, University Children’s Hospital, Eberhard Karls University Tuebingen, Tuebingen, Germany
| | - Katja Kotsch
- Department of General and Visceral Surgery, Charite-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
3
|
Saxena D, Batra L, Verma SK. Safety, Tolerability, and Immunogenicity of COVID-19 Bivalent Vaccination. Vaccines (Basel) 2023; 11:1040. [PMID: 37376429 DOI: 10.3390/vaccines11061040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023] Open
Abstract
The COVID-19 pandemic has triggered unparalleled global disruption [...].
Collapse
Affiliation(s)
- Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Lalit Batra
- Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, San Diego, CA 92130, USA
| |
Collapse
|