1
|
Dehghani A, Mamizadeh M, Karimi A, Hosseini SA, Siamian D, Shams M, Ghiabi S, Basati G, Abaszadeh A. Multi-epitope vaccine design against leishmaniasis using IFN-γ inducing epitopes from immunodominant gp46 and gp63 proteins. J Genet Eng Biotechnol 2024; 22:100355. [PMID: 38494264 PMCID: PMC10860880 DOI: 10.1016/j.jgeb.2024.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 01/24/2024] [Indexed: 03/19/2024]
Abstract
There is no currently approved human vaccine against leishmaniasis. Utilization of immunogenic antigens and their epitopes capable of enhancing immune responses against leishmaniasis is a crucial step for rational in silico vaccine design. The objective of this study was to generate and evaluate a potential vaccine candidate against leishmaniasis, designed by immunodominant proteins from gp46 and gp63 of Leishmania major, which can stimulate helper T-lymphocytes (HTL) and cytotoxic T-lymphocytes (CTL). For this aim, the IFN-γ-inducing MHC-I and MHC-II binders were predicted for each examined protein (gp46 and gp63) and connected with appropriate linkers, along with an adjuvant (Mycobacterium tuberculosis L7/L12) and a histidine tag. The vaccine's stability, antigenicity, structure, and interaction with the TLR-4 receptor were evaluated in silico. The resulting chimeric vaccine was composed of 344 amino acids and had a molecular weight of 35.64 kDa. Physico-chemical properties indicated that it was thermotolerant, soluble, highly antigenic, and non-allergenic. Predictions of the secondary and tertiary structures were made, and further analyses confirmed that the vaccine construct could interact with the human TLR-4 receptor. Virtual immune simulation demonstrated strong stimulation of T-cell responses, particularly by an increase in IFN-γ, following vaccination. In summary, the in silico data indicated that the vaccine candidate showed high antigenicity in humans. It was also found to trigger significant levels of clearance mechanisms and other components of the cellular immune profile. Nevertheless, further wet experiments are required to properly assess the efficacy of this multi-epitope vaccine candidate against leishmaniasis.
Collapse
Affiliation(s)
- Amir Dehghani
- Department of Nursery, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Mina Mamizadeh
- Department of Dermatology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran; Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Atena Karimi
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer, Iran
| | - Seyyed Amir Hosseini
- Department of Internal Medicine, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Davood Siamian
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tonekabon Branch, Mazandaran, Iran
| | - Morteza Shams
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran.
| | - Shadan Ghiabi
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gholam Basati
- Department of Biochemistry, Ilam University of Medical Sciences, Ilam, Iran
| | - Amir Abaszadeh
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
2
|
Kumar P, Kumar P, Shrivastava A, Dar MA, Lokhande KB, Singh N, Singh A, Velayutham R, Mandal D. Immunoinformatics-based multi-epitope containing fused polypeptide vaccine design against visceral leishmaniasis with high immunogenicity and TLR binding. Int J Biol Macromol 2023; 253:127567. [PMID: 37866569 DOI: 10.1016/j.ijbiomac.2023.127567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Visceral leishmaniasis (VL) is the most lethal among all leishmaniasis diseases and remains categorized as a neglected tropical disease (NTD). This study aimed to develop a peptide-based multi-epitope vaccine construct against VL using immunoinformatics methodologies. To achieve this, four distinct proteins were screened to identify peptides consisting of 9-15 amino acids with high binding affinity to toll-like receptors (TLRs), strong antigenicity, low allergenicity, and minimal toxicity. The resulting multi-epitope vaccine construct was fused in a tandem arrangement with appropriate linker peptides and exhibited superior properties related to cytotoxic T lymphocytes (CTLs), helper T lymphocytes (HTLs), and B-cell epitopes. Subsequently, a three-dimensional (3D) model of the vaccine construct was generated, refined, and validated for structural stability and immune response capabilities. Molecular docking and simulations confirmed the vaccine construct's stability and binding affinities with TLRs, with TLR4 displaying the highest binding affinity, followed by TLR2 and TLR3. Additionally, simulations predicted robust cellular and humoral antibody-mediated immune responses elicited by the designed vaccine construct. Notably, this vaccine construct includes proteins from various pathways of Leishmania donovani (LD), which have not been previously utilized in VL vaccine design. Thus, this study opens new avenues for the development of vaccines against diverse protozoan diseases.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur-Vaishali, Bihar 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur-Vaishali, Bihar 844102, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Mukhtar Ahmad Dar
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur-Vaishali, Bihar 844102, India
| | - Kiran Bharat Lokhande
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Nidhi Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, India
| | - Ashutosh Singh
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, UP, India
| | - Ravichandiran Velayutham
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur-Vaishali, Bihar 844102, India; National Institute of Pharmaceutical Education and Research (NIPER) Kolkata, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) Hajipur-Vaishali, Bihar 844102, India.
| |
Collapse
|