1
|
Tsukamoto K, Yamashita A, Maeki M, Tokeshi M, Imai H, Fukao A, Fujiwara T, Okudera K, Mizuki N, Okuda K, Shimada M. Enhanced Broad-Spectrum Efficacy of an L2-Based mRNA Vaccine Targeting HPV Types 6, 11, 16, 18, with Cross-Protection Against Multiple Additional High-Risk Types. Vaccines (Basel) 2024; 12:1239. [PMID: 39591142 PMCID: PMC11598371 DOI: 10.3390/vaccines12111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/24/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Current L1-based human papillomavirus (HPV) vaccines provide type-specific protection but offer limited cross-protection against non-vaccine HPV types. Therefore, developing a broad-spectrum HPV vaccine is highly desirable. METHODS In this study, we optimized mRNA constructs and developed a multivalent L2-based mRNA vaccine encoding L2 aa 2-130, which includes all known neutralizing epitopes from four prevalent HPV types (HPV-6, -11, -16, and -18). We evaluated its immunogenicity in a mouse model and compared the efficacy of a commercially available mRNA delivery reagent with a custom-synthesized lipid nanoparticle (LNP) formulation. RESULTS We identified that a construct containing E01 (a 5'-untranslated region) and SL2.7 (a poly(A) polymerase recruitment sequence) significantly increased protein expression. The L2-based mRNA vaccine induced robust and long-lasting humoral immune responses, with significant titers of cross-reactive serum IgG antibodies against L2 epitopes. Notably, the vaccine elicited cross-neutralizing antibodies and conferred cross-protective immunity not only against vaccine-targeted HPV types but also against non-vaccine HPV types, following intravaginal challenge in mice. We also found that LNP delivered mRNA more effectively in vivo. CONCLUSIONS The L2-based mRNA vaccine developed in this study shows significant potential for broad-spectrum protection against multiple HPV types. This approach offers a promising strategy for reducing the global burden of HPV-associated cancers.
Collapse
Affiliation(s)
- Kosuke Tsukamoto
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (K.T.)
| | - Akio Yamashita
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishiharacho 903-0215, Japan
| | - Masatoshi Maeki
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Manabu Tokeshi
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060-8628, Japan
| | - Hirotatsu Imai
- Department of Investigative Medicine, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishiharacho 903-0215, Japan
| | - Akira Fukao
- Department of Biochemistry, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Toshinobu Fujiwara
- Department of Biochemistry, Faculty of Pharmacy, Kinki University, Higashiosaka, Osaka 577-8502, Japan
| | - Koji Okudera
- Department of Pathology, Faculty of Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Nobuhisa Mizuki
- Department of Ophthalmology and Visual Science, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan; (K.T.)
| | - Kenji Okuda
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masaru Shimada
- Department of Molecular Biodefense Research, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| |
Collapse
|
2
|
Zhang Y, Qin LM, Feng MF, Yu X, Wu Y. RNA-binding peptide and endosomal escape-assisting peptide (L2) improved siRNA delivery by the hexahistidine-metal assembly. J Mater Chem B 2024; 12:10309-10319. [PMID: 39282740 DOI: 10.1039/d4tb01433b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
Small interfering RNAs (siRNAs), comprising 21-23 nucleotides, function by complementary binding to specific mRNA sequences, thereby suppressing target protein expression. Despite their vast potential in disease therapy, siRNAs face challenges due to their susceptibility to degradation and high electronegativity, rendering them unstable in the bloodstream and impeding their passage across endothelial barriers. Moreover, successful intracellular delivery necessitates overcoming endosomal entrapment, posing a significant hurdle for carrier material development. In this study, leveraging the strong affinity of histidine oligomers (His6) for metal ions, we engineered nanoparticles (HmA) by gentle assembly with divalent zinc ions under pH = 8 conditions. We designed the RNA-binding functional peptide L2-NTD to enhance siRNA stability and delivery efficiency when complexed with HmA. The resulting siRNA+L2-NTD@HmA nanoparticles were formed via in situ encapsulation, ensuring efficient siRNA delivery into cells with minimal cytotoxicity and degradation. This approach presents a novel strategy for the design and artificial fabrication of carriers for effective RNA delivery.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Li-Miao Qin
- State Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Meng-Fan Feng
- State Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Science, Jilin University, No. 2699 Qianjin Street, Changchun 130012, China
| | - Yuqing Wu
- State Key Laboratory for Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| |
Collapse
|
3
|
Ho MY, Liu S, Xing B. Bacteria extracellular vesicle as nanopharmaceuticals for versatile biomedical potential. NANO CONVERGENCE 2024; 11:28. [PMID: 38990415 PMCID: PMC11239649 DOI: 10.1186/s40580-024-00434-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Bacteria extracellular vesicles (BEVs), characterized as the lipid bilayer membrane-surrounded nanoparticles filled with molecular cargo from parent cells, play fundamental roles in the bacteria growth and pathogenesis, as well as facilitating essential interaction between bacteria and host systems. Notably, benefiting from their unique biological functions, BEVs hold great promise as novel nanopharmaceuticals for diverse biomedical potential, attracting significant interest from both industry and academia. Typically, BEVs are evaluated as promising drug delivery platforms, on account of their intrinsic cell-targeting capability, ease of versatile cargo engineering, and capability to penetrate physiological barriers. Moreover, attributing to considerable intrinsic immunogenicity, BEVs are able to interact with the host immune system to boost immunotherapy as the novel nanovaccine against a wide range of diseases. Towards these significant directions, in this review, we elucidate the nature of BEVs and their role in activating host immune response for a better understanding of BEV-based nanopharmaceuticals' development. Additionally, we also systematically summarize recent advances in BEVs for achieving the target delivery of genetic material, therapeutic agents, and functional materials. Furthermore, vaccination strategies using BEVs are carefully covered, illustrating their flexible therapeutic potential in combating bacterial infections, viral infections, and cancer. Finally, the current hurdles and further outlook of these BEV-based nanopharmaceuticals will also be provided.
Collapse
Affiliation(s)
- Ming Yao Ho
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore, S637371, Singapore.
| |
Collapse
|
4
|
Yang M. Interaction between intestinal flora and gastric cancer in tumor microenvironment. Front Oncol 2024; 14:1402483. [PMID: 38835386 PMCID: PMC11148328 DOI: 10.3389/fonc.2024.1402483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 05/01/2024] [Indexed: 06/06/2024] Open
Abstract
Gastric Cancer (GC) is a prevalent malignancy globally and is the third leading cause of cancer-related deaths. Recent researches focused on the correlation between intestinal flora and GC. Studies indicate that bacteria can influence the development of gastrointestinal tumors by releasing bacterial extracellular vesicles (BEVs). The Tumor microenvironment (TME) plays an important role in tumor survival, with the interaction between intestinal flora, BEVs, and TME directly impacting tumor progression. Moreover, recent studies have demonstrated that intestinal microflora and BEVs can modify TME to enhance the effectiveness of antitumor drugs. This review article provides an overview and comparison of the biological targets through which the intestinal microbiome regulates TME, laying the groundwork for potential applications in tumor diagnosis, treatment, and prognosis.
Collapse
Affiliation(s)
- Mingjin Yang
- Department of Gastrointestinal Surgery, The Affiliated People's Hospital of Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Liu J, Kang R, Tang D. Lipopolysaccharide delivery systems in innate immunity. Trends Immunol 2024; 45:274-287. [PMID: 38494365 DOI: 10.1016/j.it.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024]
Abstract
Lipopolysaccharide (LPS), a key component of the outer membrane in Gram-negative bacteria (GNB), is widely recognized for its crucial role in mammalian innate immunity and its link to mortality in intensive care units. While its recognition via the Toll-like receptor (TLR)-4 receptor on cell membranes is well established, the activation of the cytosolic receptor caspase-11 by LPS is now known to lead to inflammasome activation and subsequent induction of pyroptosis. Nevertheless, a fundamental question persists regarding the mechanism by which LPS enters host cells. Recent investigations have identified at least four primary pathways that can facilitate this process: bacterial outer membrane vesicles (OMVs); the spike (S) protein of SARS-CoV-2; host-secreted proteins; and host extracellular vesicles (EVs). These delivery systems provide new avenues for therapeutic interventions against sepsis and infectious diseases.
Collapse
Affiliation(s)
- Jiao Liu
- DAMP Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
6
|
Tatarūnas V, Čiapienė I, Giedraitienė A. Precise Therapy Using the Selective Endogenous Encapsidation for Cellular Delivery Vector System. Pharmaceutics 2024; 16:292. [PMID: 38399346 PMCID: PMC10893373 DOI: 10.3390/pharmaceutics16020292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/13/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Interindividual variability in drug response is a major problem in the prescription of pharmacological treatments. The therapeutic effect of drugs can be influenced by human genes. Pharmacogenomic guidelines for individualization of treatment have been validated and used for conventional dosage forms. However, drugs can often target non-specific areas and produce both desired and undesired pharmacological effects. The use of nanoparticles, liposomes, or other available forms for drug formulation could help to overcome the latter problem. Virus-like particles based on retroviruses could be a potential envelope for safe and efficient drug formulations. Human endogenous retroviruses would make it possible to overcome the host immune response and deliver drugs to the desired target. PEG10 is a promising candidate that can bind to mRNA because it is secreted like an enveloped virus-like extracellular vesicle. PEG10 is a retrotransposon-derived gene that has been domesticated. Therefore, formulations with PEG10 may have a lower immunogenicity. The use of existing knowledge can lead to the development of suitable drug formulations for the precise treatment of individual diseases.
Collapse
Affiliation(s)
- Vacis Tatarūnas
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Ieva Čiapienė
- Institute of Cardiology, Lithuanian University of Health Sciences, Sukileliu 15, LT 50103 Kaunas, Lithuania; (V.T.); (I.Č.)
| | - Agnė Giedraitienė
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Eiveniu 4, LT 50161 Kaunas, Lithuania
| |
Collapse
|