1
|
Liu H, Gou X, Tan Y, Fan Q, Chen J. Immunotherapy and delivery systems for melanoma. Hum Vaccin Immunother 2024; 20:2394252. [PMID: 39286868 PMCID: PMC11409522 DOI: 10.1080/21645515.2024.2394252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Melanoma is a highly malignant tumor of melanocyte origin that is prone to early metastasis and has a very poor prognosis. Early melanoma treatment modalities are mainly surgical, and treatment strategies for advanced or metastatic melanoma contain chemotherapy, radiotherapy, targeted therapy and immunotherapy. The efficacy of chemotherapy and radiotherapy has been unsatisfactory due to low sensitivity and strong toxic side effects. And targeted therapy is prone to drug resistance, so its clinical application is limited. Melanoma has always been the leader of immunotherapy for solid tumors, and how to maximize the role of immunotherapy and how to implement immunotherapy more accurately are still urgent to be explored. This review summarizes the common immunotherapies and applications for melanoma, illustrates the current research status of melanoma immunotherapy delivery systems, and discusses the advantages and disadvantages of each delivery system and its prospects for clinical application.
Collapse
Affiliation(s)
- Hui Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xi Gou
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuanfang Tan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Qiuying Fan
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Juanjuan Chen
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
2
|
Duta-Ion SG, Juganaru IR, Hotinceanu IA, Dan A, Burtavel LM, Coman MC, Focsa IO, Zaruha AG, Codreanu PC, Bohiltea LC, Radoi VE. Redefining Therapeutic Approaches in Colorectal Cancer: Targeting Molecular Pathways and Overcoming Resistance. Int J Mol Sci 2024; 25:12507. [PMID: 39684219 DOI: 10.3390/ijms252312507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Colorectal cancer (CRC) arises through a combination of genetic and epigenetic alterations that affect key pathways involved in tumor growth and progression. This review examines the major molecular pathways driving CRC, including Chromosomal Instability (CIN), Microsatellite Instability (MSI), and the CpG Island Methylator Phenotype (CIMP). Key mutations in genes such as APC, KRAS, NRAS, BRAF, and TP53 activate signaling pathways like Wnt, EGFR, and PI3K/AKT, contributing to tumorigenesis and influencing responses to targeted therapies. Resistance mechanisms, including mutations that bypass drug action, remain challenging in CRC treatment. This review highlights the role of molecular profiling in guiding the use of targeted therapies such as tyrosine kinase inhibitors and immune checkpoint inhibitors. Novel combination treatments are also discussed as strategies to improve outcomes and overcome resistance. Understanding these molecular mechanisms is critical to advancing personalized treatment approaches in CRC and improving patient prognosis.
Collapse
Affiliation(s)
- Simona Gabriela Duta-Ion
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ioana Ruxandra Juganaru
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Iulian Andrei Hotinceanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Dan
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Livia Malina Burtavel
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Madalin Codrut Coman
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Ina Ofelia Focsa
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Andra Giorgiana Zaruha
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Patricia Christina Codreanu
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Laurentiu Camil Bohiltea
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Viorica Elena Radoi
- Department of Medical Genetics, "Carol Davila" University of Medicine and Pharmacy, 020021 Bucharest, Romania
- "Alessandrescu-Rusescu" National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| |
Collapse
|
3
|
He J, Wu J, Li Z, Zhao Z, Qiu L, Zhu X, Liu Z, Xia H, Hong P, Yang J, Ni L, Lu J. Immunotherapy Vaccines for Prostate Cancer Treatment. Cancer Med 2024; 13:e70294. [PMID: 39463159 PMCID: PMC11513549 DOI: 10.1002/cam4.70294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Therapeutic tumor vaccines have emerged as a compelling avenue for treating patients afflicted with advanced prostate cancer (PCa), particularly those experiencing biochemical relapse or ineligible for surgical intervention. This study serves to consolidate recent research findings on therapeutic vaccines targeting prostate tumors while delineating prevalent challenges within vaccine research and development. METHODS We searched electronic databases, including PubMed, Web of Science, Embase, and Scopus, up to August 31, 2024, using keywords such as 'vaccine', 'prostate cancer', 'immunotherapy', and others. We reviewed studies on various therapeutic vaccines, including dendritic cell-based, antigen, nucleic acid, and tumor cell vaccines. RESULTS Studies consistently showed that therapeutic vaccines, notably DC vaccines, had favorable safety profiles with few adverse effects. These vaccines, with varied antigenic formulations, demonstrated strong clinical outcomes, as indicated by metrics such as PSA response rates (9.5%-58%), extended PSA doubling times (52.9%-89.7%), overall survival durations (17.7-33.8 months), two-year mortality rates (0%-12.5%), biochemical relapse rates (42%-73%), and antigen-specific immune responses (33.3%-71.4% in responsive groups). CONCLUSION While clinical data for tumor vaccines have illuminated robust evidence of tumoricidal activity, the processes of their formulation and deployment are riddled with complexities. Combining vaccines with other therapies may enhance outcomes, and future research should focus on early interventions and deciphering the immune system's role in oncogenesis.
Collapse
Affiliation(s)
- Jide He
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jialong Wu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Ziang Li
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zhenkun Zhao
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Lei Qiu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Xuehua Zhu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Zenan Liu
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Haizhui Xia
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Peng Hong
- Department of UrologyPeking University Third HospitalBeijingChina
| | - Jianling Yang
- Institute of Medical Innovation and ResearchPeking University Third HospitalBeijingChina
| | - Ling Ni
- Institute for Immunology and School of MedicineTsinghua University, Medical Research BuildingBeijingChina
| | - Jian Lu
- Department of UrologyPeking University Third HospitalBeijingChina
- State Key Laboratory of Natural and Biomimetic DrugsPeking University
| |
Collapse
|
4
|
Chandra S, Wilson JC, Good D, Wei MQ. mRNA vaccines: a new era in vaccine development. Oncol Res 2024; 32:1543-1564. [PMID: 39308511 PMCID: PMC11413818 DOI: 10.32604/or.2024.043987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/02/2024] [Indexed: 09/25/2024] Open
Abstract
The advent of RNA therapy, particularly through the development of mRNA cancer vaccines, has ushered in a new era in the field of oncology. This article provides a concise overview of the key principles, recent advancements, and potential implications of mRNA cancer vaccines as a groundbreaking modality in cancer treatment. mRNA cancer vaccines represent a revolutionary approach to combatting cancer by leveraging the body's innate immune system. These vaccines are designed to deliver specific mRNA sequences encoding cancer-associated antigens, prompting the immune system to recognize and mount a targeted response against malignant cells. This personalized and adaptive nature of mRNA vaccines holds immense potential for addressing the heterogeneity of cancer and tailoring treatments to individual patients. Recent breakthroughs in the development of mRNA vaccines, exemplified by the success of COVID-19 vaccines, have accelerated their application in oncology. The mRNA platform's versatility allows for the rapid adaptation of vaccine candidates to various cancer types, presenting an agile and promising avenue for therapeutic intervention. Clinical trials of mRNA cancer vaccines have demonstrated encouraging results in terms of safety, immunogenicity, and efficacy. Pioneering candidates, such as BioNTech's BNT111 and Moderna's mRNA-4157, have exhibited promising outcomes in targeting melanoma and solid tumors, respectively. These successes underscore the potential of mRNA vaccines to elicit robust and durable anti-cancer immune responses. While the field holds great promise, challenges such as manufacturing complexities and cost considerations need to be addressed for widespread adoption. The development of scalable and cost-effective manufacturing processes, along with ongoing clinical research, will be pivotal in realizing the full potential of mRNA cancer vaccines. Overall, mRNA cancer vaccines represent a cutting-edge therapeutic approach that holds the promise of transforming cancer treatment. As research progresses, addressing challenges and refining manufacturing processes will be crucial in advancing these vaccines from clinical trials to mainstream oncology practice, offering new hope for patients in the fight against cancer.
Collapse
Affiliation(s)
- Shubhra Chandra
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - Jennifer C Wilson
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| | - David Good
- School of Allied Health, Australian Catholic University, Brisbane, QLD-4014, Australia
| | - Ming Q Wei
- School of Pharmacy & Medical Sciences, Gold Coast campus, Griffith University, Brisbane, QLD-4222, Australia
- Menzies Health Institute Queensland (MHIQ), Gold Coast Campus, Griffith University, Brisbane, QLD-4215, Australia
| |
Collapse
|
5
|
Ranawat P, Sharma B, Singh P, Kaur T. Exploring Cancer Immunotherapy and the Promise of Cancer Vaccine. ADVANCES IN MEDICAL DIAGNOSIS, TREATMENT, AND CARE 2024:265-310. [DOI: 10.4018/979-8-3693-3976-3.ch008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The goal of immunotherapy is to enhance the immune system by managing the immunological-mediated microenvironment, which makes it possible for immune cells to locate and destroy tumour cells at vital nodes. In the tumor microenvironment, immune responses against tumour cells are reduced when these cells take up immune-regulatory mechanisms. An environment that suppresses the immune system is facilitated by immune cells, including regulatory T cells, regulatory B cells, dendritic cells, and myeloid-derived suppressor cells. In a number of cancer types, adoptive immune cells and immune checkpoint modulators have shown impressive anticancer benefits. Tumour growth is facilitated in large part by immune cells found in the tumour microenvironment (TME). Tumour growth may be stimulated or inhibited by these cells. The ability of the immune system to elude detection by cancer cells offers new possibilities for innovative cancer treatment strategies.
Collapse
|
6
|
Ferraguti G, Terracina S, Tarani L, Fanfarillo F, Allushi S, Caronti B, Tirassa P, Polimeni A, Lucarelli M, Cavalcanti L, Greco A, Fiore M. Nerve Growth Factor and the Role of Inflammation in Tumor Development. Curr Issues Mol Biol 2024; 46:965-989. [PMID: 38392180 PMCID: PMC10888178 DOI: 10.3390/cimb46020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/12/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
Nerve growth factor (NGF) plays a dual role both in inflammatory states and cancer, acting both as a pro-inflammatory and oncogenic factor and as an anti-inflammatory and pro-apoptotic mediator in a context-dependent way based on the signaling networks and its interaction with diverse cellular components within the microenvironment. This report aims to provide a summary and subsequent review of the literature on the role of NGF in regulating the inflammatory microenvironment and tumor cell growth, survival, and death. The role of NGF in inflammation and tumorigenesis as a component of the inflammatory system, its interaction with the various components of the respective microenvironments, its ability to cause epigenetic changes, and its role in the treatment of cancer have been highlighted in this paper.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Luigi Tarani
- Department of Maternal Infantile and Urological Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesca Fanfarillo
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Allushi
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University Hospital of Rome, 00185 Rome, Italy
| | - Paola Tirassa
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Cavalcanti
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Department of Sensory Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|