Lokhov PG, Balashova EE. Antigenic Essence: Upgrade of Cellular Cancer Vaccines.
Cancers (Basel) 2021;
13:cancers13040774. [PMID:
33673325 PMCID:
PMC7917603 DOI:
10.3390/cancers13040774]
[Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/10/2021] [Indexed: 11/18/2022] Open
Abstract
Simple Summary
Early cancer vaccines include whole-cell formulations, which operate on the principle that you should vaccinate with what you want to develop protection against. Such vaccines have been widely tested in various cancers and their advantages described but have not yet managed to pass clinical trials. Antigenic essence technology offers the possibility to revitalize the field of whole-cell-based vaccination, as the essence comprises the entire diversity of native cellular antigens. At the same time, the technology allows for precise control and purposeful change of essence composition as well as purification of essence from ballast cellular substances and also addresses issues of major histocompatibility complex restriction. Antigenic essence technology makes it possible to update many cellular vaccines that have already been developed, as well as to develop new ones, therefore introducing a new direction for anticancer vaccination research.
Abstract
The development of anticancer immunotherapy is characterized by several approaches, the most recognized of which include cellular vaccines, tumor-associated antigens (TAAs), neoantigens, and chimeric antigen receptor T cells (CAR-T). This paper presents antigenic essence technology as an effective means for the production of new antigen compositions for anticancer vaccination. This technology is developed via proteomics, cell culture technology, and immunological assays. In terms of vaccine development, it does not fit into any of the above-noted approaches and can be considered a new direction. Here we review the development of this technology, its main characteristics, comparison with existing approaches, and the features that distinguish it as a novel approach to anticancer vaccination. This review will also highlight the benefits of this technology over other approaches, such as the ability to control composition, optimize immunogenicity and similarity to target cells, and evade major histocompatibility complex restriction. The first antigenic essence products, presented under the SANTAVAC brand, are also described.
Collapse