1
|
Elguindy DAS, Ashour DS, Elmarhoumy SM, El-Guindy DM, Ismail HIH. The efficacy of cercarial antigen loaded on nanoparticles as a potential vaccine candidate in Schistosoma mansoni-infected mice. J Parasit Dis 2024; 48:381-399. [PMID: 38840868 PMCID: PMC11147980 DOI: 10.1007/s12639-024-01677-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/21/2024] [Indexed: 06/07/2024] Open
Abstract
Schistosomiasis is one of the most common causes of morbidity and mortality from parasitic diseases. Mass treatment has proven to be insufficient because of repeated infection after treatment and the appearance of strains resistant to drug therapy. Hence, immunization is a new approach to control the disease and limit the pathological consequences of schistosomiasis. To evaluate the prophylactic effect of Cercarial antigen (CAP) loaded on chitosan nanoparticles (CSNPs) as a potential vaccine against Schistosoma mansoni-infected mice. 130 mice divided into 2 groups were used: Group I: Control groups (50 mice) subdivided into subgroup Ia (10 mice): Non-infected mice (normal control), subgroup Ib (20 mice): Schistosoma infected mice (infected control) and subgroup Ic (20 mice): Non-infected mice receiving NPs only. Group II: Vaccinated group (80 mice) subdivided equally into subgroup IIa (CAP): Received cercarial antigen and subgroup IIb (CAP + CSNP): Received cercarial antigen loaded on chitosan NPs then both vaccinated groups were infected with S. mansoni 3 weeks following the initial vaccination dose. CAP + CSNP and CAP groups showed significant reduction in adult worms count, hepatic egg count, hepatic granulomas number and size in comparison to the infected control group. Elevation of serum IgG and IgM levels, CD4+ and CD8+ T cell frequencies, IL-4, IL-10 and INF-γ levels was more significant in CAP + CSNP group than CAP group. CAP + CSNP is a promising new preparation of Schistosomal antigens that gave better results than immunization with CAP alone. CSNPs enhanced the immune and protective effect of CAP as validated by parasitological, histopathological and immunohistochemical studies.
Collapse
Affiliation(s)
- Dina A. S. Elguindy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dalia S. Ashour
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Sirria M. Elmarhoumy
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Dina M. El-Guindy
- Pathology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Howaida I. H. Ismail
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
2
|
Panzner U, Excler JL, Kim JH, Marks F, Carter D, Siddiqui AA. Recent Advances and Methodological Considerations on Vaccine Candidates for Human Schistosomiasis. FRONTIERS IN TROPICAL DISEASES 2021; 2:719369. [PMID: 39280170 PMCID: PMC11392908 DOI: 10.3389/fitd.2021.719369] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2024] Open
Abstract
Schistosomiasis remains a neglected tropical disease of major public health concern with high levels of morbidity in various parts of the world. Although considerable efforts in implementing mass drug administration programs utilizing praziquantel have been deployed, schistosomiasis is still not contained. A vaccine may therefore be an essential part of multifaceted prevention control efforts. In the 1990s, a joint United Nations committee promoting parasite vaccines shortlisted promising candidates including for schistosomiasis discussed below. After examining the complexity of immune responses in human hosts infected with schistosomes, we review and discuss the antigen design and preclinical and clinical development of the four leading vaccine candidates: Sm-TSP-2 in Phase 1b/2b, Sm14 in Phase 2a/2b, Sm-p80 in Phase 1 preparation, and Sh28GST in Phase 3. Our assessment of currently leading vaccine candidates revealed some methodological issues that preclude a fair comparison between candidates and the rationale to advance in clinical development. These include (1) variability in animal models - in particular non-human primate studies - and predictive values of each for protection in humans; (2) lack of consensus on the assessment of parasitological and immunological parameters; (3) absence of reliable surrogate markers of protection; (4) lack of well-designed parasitological and immunological natural history studies in the context of mass drug administration with praziquantel. The controlled human infection model - while promising and unique - requires validation against efficacy outcomes in endemic settings. Further research is also needed on the impact of advanced adjuvants targeting specific parts of the innate immune system that may induce potent, protective and durable immune responses with the ultimate goal of achieving meaningful worm reduction.
Collapse
Affiliation(s)
- Ursula Panzner
- International Vaccine Institute, Seoul, South Korea
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | | | - Florian Marks
- International Vaccine Institute, Seoul, South Korea
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
- University of Antananarivo, Antananarivo, Madagascar
| | | | - Afzal A. Siddiqui
- Center for Tropical Medicine and Infectious Diseases, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
3
|
Pearson MS, Tedla BA, Becker L, Nakajima R, Jasinskas A, Mduluza T, Mutapi F, Oeuvray C, Greco B, Sotillo J, Felgner PL, Loukas A. Immunomics-Guided Antigen Discovery for Praziquantel-Induced Vaccination in Urogenital Human Schistosomiasis. Front Immunol 2021; 12:663041. [PMID: 34113343 PMCID: PMC8186320 DOI: 10.3389/fimmu.2021.663041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/22/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the enormous morbidity attributed to schistosomiasis, there is still no vaccine to combat the disease for the hundreds of millions of infected people. The anthelmintic drug, praziquantel, is the mainstay treatment option, although its molecular mechanism of action remains poorly defined. Praziquantel treatment damages the outermost surface of the parasite, the tegument, liberating surface antigens from dying worms that invoke a robust immune response which in some subjects results in immunologic resistance to reinfection. Herein we term this phenomenon Drug-Induced Vaccination (DIV). To identify the antigenic targets of DIV antibodies in urogenital schistosomiasis, we constructed a recombinant proteome array consisting of approximately 1,000 proteins informed by various secretome datasets including validated proteomes and bioinformatic predictions. Arrays were screened with sera from human subjects treated with praziquantel and shown 18 months later to be either reinfected (chronically infected subjects, CI) or resistant to reinfection (DIV). IgG responses to numerous antigens were significantly elevated in DIV compared to CI subjects, and indeed IgG responses to some antigens were completely undetectable in CI subjects but robustly recognized by DIV subjects. One antigen in particular, a cystatin cysteine protease inhibitor stood out as a unique target of DIV IgG, so recombinant cystatin was produced, and its vaccine efficacy assessed in a heterologous Schistosoma mansoni mouse challenge model. While there was no significant impact of vaccination with adjuvanted cystatin on adult worm numbers, highly significant reductions in liver egg burdens (45-55%, P<0.0001) and intestinal egg burdens (50-54%, P<0.0003) were achieved in mice vaccinated with cystatin in two independent trials. This study has revealed numerous antigens that are targets of DIV antibodies in urogenital schistosomiasis and offer promise as subunit vaccine targets for a drug-linked vaccination approach to controlling schistosomiasis.
Collapse
Affiliation(s)
- Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Bemnet A. Tedla
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Rie Nakajima
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Al Jasinskas
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Takafira Mduluza
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Harare, Zimbabwe
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh based in Harare (TIBA Zimbabwe), Harare, Zimbabwe
| | - Francisca Mutapi
- Institute of Immunology and infection Research, Ashworth Laboratories, Edinburgh, United Kingdom
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh, Edinburgh, United Kingdom
| | - Claude Oeuvray
- TIBA Partnership, NIHR Global Health Research Unit Tackling Infections to Benefit Africa (TIBA) at the University of Edinburgh, Edinburgh, United Kingdom
| | - Beatrice Greco
- Global Health Institute of Merck, Ares Trading S.A., a subsidiary of Merck KGaA (Darmstadt, Germany), Eysins, Switzerland
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Philip L. Felgner
- Vaccine Research and Development Center, Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, United States
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| |
Collapse
|
4
|
Perera DJ, Hassan AS, Jia Y, Ricciardi A, McCluskie MJ, Weeratna RD, Ndao M. Adjuvanted Schistosoma mansoni-Cathepsin B With Sulfated Lactosyl Archaeol Archaeosomes or AddaVax™ Provides Protection in a Pre-Clinical Schistosomiasis Model. Front Immunol 2020; 11:605288. [PMID: 33304354 PMCID: PMC7701121 DOI: 10.3389/fimmu.2020.605288] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 10/20/2020] [Indexed: 12/15/2022] Open
Abstract
Schistosomiasis threatens 800 million people worldwide. Chronic pathology manifests as hepatosplenomegaly, and intestinal schistosomiasis caused by Schistosoma mansoni can lead to liver fibrosis, cirrhosis, and blood in the stool. To assist the only FDA-approved drug, praziquantel, in parasite elimination, the development of a vaccine would be of high value. S. mansoni Cathepsin B (SmCB) is a well-documented vaccine target for intestinal schistosomiasis. Herein, we test the increased efficacy and immunogenicity of SmCB when combined with sulfated lactosyl archaeol (SLA) archaeosomes or AddaVax™ (a squalene based oil-in-water emulsion). Both vaccine formulations resulted in robust humoral and cell mediated immune responses. Impressively, both formulations were able to reduce parasite burden greater than 40% (WHO standard), with AddaVax™ reaching 86.8%. Additionally, SmCB with both adjuvants were able to reduce granuloma size and the amount of larval parasite hatched from feces, which would reduce transmission. Our data support SmCB as a target for S. mansoni vaccination; especially when used in an adjuvanted formulation.
Collapse
Affiliation(s)
- Dilhan J Perera
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Adam S Hassan
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Yimei Jia
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Alessandra Ricciardi
- Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Michael J McCluskie
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Risini D Weeratna
- Human Health Therapeutics Research Centre, National Research Council Canada, Ottawa, ON, Canada
| | - Momar Ndao
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada.,Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada.,National Reference Center for Parasitology, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| |
Collapse
|
5
|
Mekonnen GG, Tedla BA, Pickering D, Becker L, Wang L, Zhan B, Bottazzi ME, Loukas A, Sotillo J, Pearson MS. Schistosoma haematobium Extracellular Vesicle Proteins Confer Protection in a Heterologous Model of Schistosomiasis. Vaccines (Basel) 2020; 8:E416. [PMID: 32722279 PMCID: PMC7563238 DOI: 10.3390/vaccines8030416] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 01/16/2023] Open
Abstract
Helminth parasites release extracellular vesicles which interact with the surrounding host tissues, mediating host-parasite communication and other fundamental processes of parasitism. As such, vesicle proteins present attractive targets for the development of novel intervention strategies to control these parasites and the diseases they cause. Herein, we describe the first proteomic analysis by LC-MS/MS of two types of extracellular vesicles (exosome-like, 120 k pellet vesicles and microvesicle-like, 15 k pellet vesicles) from adult Schistosoma haematobium worms. A total of 57 and 330 proteins were identified in the 120 k pellet vesicles and larger 15 k pellet vesicles, respectively, and some of the most abundant molecules included homologues of known helminth vaccine and diagnostic candidates such as Sm-TSP2, Sm23, glutathione S-transferase, saponins and aminopeptidases. Tetraspanins were highly represented in the analysis and found in both vesicle types. Vaccination of mice with recombinant versions of three of these tetraspanins induced protection in a heterologous challenge (S. mansoni) model of infection, resulting in significant reductions (averaged across two independent trials) in liver (47%, 38% and 41%) and intestinal (47%, 45% and 41%) egg burdens. These findings offer insight into the mechanisms by which anti-tetraspanin antibodies confer protection and highlight the potential that extracellular vesicle surface proteins offer as anti-helminth vaccines.
Collapse
Affiliation(s)
- Gebeyaw G. Mekonnen
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Bemnet A. Tedla
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
| | - Darren Pickering
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
| | - Luke Becker
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
| | - Lei Wang
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (L.W.); (B.Z.); (M.E.B.)
| | - Bin Zhan
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (L.W.); (B.Z.); (M.E.B.)
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Department of Pediatrics and National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA; (L.W.); (B.Z.); (M.E.B.)
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
- Parasitology Reference and Research Laboratory, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Mark S. Pearson
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns 4878, Queensland, Australia; (G.G.M.); (B.A.T.); (D.P.); (L.B.); (J.S.)
| |
Collapse
|