1
|
Chen S, Ozberk V, Sam G, Gonzaga ZJC, Calcutt A, Pandey M, Good MF, Rehm BHA. Polymeric epitope-based vaccine induces protective immunity against group A Streptococcus. NPJ Vaccines 2023; 8:102. [PMID: 37452052 PMCID: PMC10349049 DOI: 10.1038/s41541-023-00695-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Group A Streptococcus (Strep A) is a life-threatening human pathogen with no licensed vaccine. Here, we used a biopolymer particle (BP) approach to display repeats of Strep A vaccine candidate peptides p*17 and K4S2 derived from M and non-M protein, respectively. BPs densely displaying both peptides (BP-p*17-S2) were successfully assembled in one-step inside an engineered endotoxin-free Escherichia coli strain. Purified BP-p*17-S2 showed a spherical core-shell morphology with a biopolymer core and peptide shell. Upon formulation with aluminum hydroxide as adjuvant, BP-p*17-S2 exhibited a mean diameter of 2.9 µm and a positive surface charge of 22 mV. No cytotoxicity was detected when tested against HEK-293 cells. Stability studies showed that BP-p*17-S2 is ambient-temperature stable. Immunized mice showed no adverse reactions, while producing high titers of peptide specific antibodies and cytokines. This immune response could be correlated with protective immunity in an animal model of infection, i.e. intranasal challenge of mice with Strep A, where a significant reduction of >100-fold of pathogen burden in nose-associated lymphoid tissue, lung, and spleen was obtained. The cost-effective scalable manufacture of ambient-temperature stable BPs coated with Strep A peptides combined with their immunogenic properties offer an attractive alternative strategy to current Strep A vaccine development.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia.
| | - Victoria Ozberk
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia
| | - Zennia Jean C Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia
| | - Ainslie Calcutt
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Michael F Good
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia.
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia.
| |
Collapse
|
2
|
Islam MT, Ho MF, Nahar UJ, Shalash AO, Koirala P, Hussein WM, Stanisic DI, Good MF, Skwarczynski M, Toth I. Investigation of liposomal self-adjuvanting peptide epitopes derived from conserved blood-stage Plasmodium antigens. PLoS One 2022; 17:e0264961. [PMID: 35275957 PMCID: PMC8916655 DOI: 10.1371/journal.pone.0264961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/20/2022] [Indexed: 11/19/2022] Open
Abstract
Malaria is a vector born parasitic disease causing millions of deaths every year. Despite the high mortality rate, an effective vaccine against this mosquito-borne infectious disease is yet to be developed. Up to date, RTS,S/AS01 is the only vaccine available for malaria prevention; however, its efficacy is low. Among a variety of malaria antigens, merozoite surface protein-1(MSP-1) and ring-infected erythrocyte surface antigen (RESA) have been proposed as promising candidates for malaria vaccine development. We developed peptide-based Plasmodium falciparum vaccine candidates that incorporated three previously reported conserved epitopes from MSP-1 and RESA into highly effective liposomal polyleucine delivery system. Indeed, MSP-1 and RESA-derived epitopes conjugated to polyleucine and formulated into liposomes induced higher epitope specific antibody titres. However, immunized mice failed to demonstrate protection in a rodent malaria challenge study with Plasmodium yoelii. In addition, we found that the three reported P. falciparum epitopes did not to share conformational properties and high sequence similarity with P. yoelii MSP-1 and RESA proteins, despite the epitopes were reported to protect mice against P. yoelii challenge.
Collapse
Affiliation(s)
- Md. Tanjir Islam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Mei-Fong Ho
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Ummey J. Nahar
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ahmed O. Shalash
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | | | - Michael F. Good
- Institute for Glycomics, Griffith University, Southport, QLD, Australia
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail: (IT); (MS)
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, Australia
- Institute for Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- * E-mail: (IT); (MS)
| |
Collapse
|
3
|
Huang W, Madge HYR, Zhang J, Gilmartin L, Hussein WM, Khalil ZG, Koirala P, Capon RJ, Toth I, Stephenson RJ. Structure-activity relationship of lipid, cyclic peptide and antigen rearrangement of physically mixed vaccines. Int J Pharm 2022; 617:121614. [PMID: 35245637 DOI: 10.1016/j.ijpharm.2022.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/18/2022]
Abstract
Currently there is no approved vaccine to prevent and/or treat group A Streptococcus (GAS) infection. With increasing reports of GAS antibiotic resistance, vaccine adjuvants and targeted delivery systems which induce a strong immune response are a widely acknowledged unmet need. Through extensive structure-activity studies, we investigated a cyclic decapeptide physically mixed with a GAS B cell peptide epitope (J8), a universal T helper epitope (PADRE), and different synthetic lipidic moieties as a conceivable self-adjuvanting GAS vaccine. We explored the structure (orientation)-relationship of the chemically-conjugated B cell epitope and T helper epitope peptide as part of this physically-mixed vaccine. Following in vivo assessment in mice, these cyclic lipopeptide vaccines showed successful induction of J8-specific systemic IgG antibodies when administered subcutaneously without additional adjuvant. Interestingly, an exposed C-terminus of the GAS B cell epitope and a 16-carbon alpha-amino fatty acid lipid was required for strong immunoreactivity, capable of effectively opsonising multiple strains of clinically-isolated GAS bacteria. Physicochemical assessment proved the alpha helix structure of the GAS B cell epitope was retained, impacting particle self-assembly and vaccine immunoreactivity. This study showed the capability for a self-adjuvanting cyclic delivery system to act as a vehicle for the delivery of GAS peptide antigens to treat GAS infection.
Collapse
Affiliation(s)
- Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Jiahui Zhang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia; School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
4
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan‐Based Vaccine for
Streptococcus Pyogenes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Asmaa Mahmoud
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences The University of Queensland Woolloongabba Australia
- School of Pharmacy The Universitry of Queensland St Lucia Australia
- Institue for Molecular Biosciences The University of Queensland St Lucia Australia
| | - Rachel Stephenson
- School of Chemistry and Molecular Biosciences The University of Queensland St Lucia Australia
| |
Collapse
|
5
|
Madge HYR, Huang W, Gilmartin L, Rigau-Planella B, Hussein WM, Khalil ZG, Koirala P, Santiago VS, Capon RJ, Toth I, Stephenson RJ. Physical mixture of a cyclic lipopeptide vaccine induced high titres of opsonic IgG antibodies against group A streptococcus. Biomater Sci 2021; 10:281-293. [PMID: 34853841 DOI: 10.1039/d1bm01333e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Untreated or reoccurring group A Streptococcus (GAS) infection can lead to a number of post-infection complications, including rheumatic heart disease. There is no licenced vaccine for the treatment or prevention of GAS infection. We identified that a cyclic decapeptide plays a significant positive influence on the adjuvant activity of several lipid-antigen mixtures. Here, three synthetic vaccine components were synthesised: (1) J8-PADRE represents the GAS B cell antigen (J8) conjugated to the universal T helper epitope (PADRE); (2) a synthetic toll like receptor 2 (TLR2) ligand based on a C16 alkyl chain lipid moiety; and (3) a cyclic carrier deca-peptide. Previously, through structure-immune activity investigations, it was observed that a physical mixture of these three components had significantly higher IgG immune responses when compared to a fully conjugated vaccine construct. Expanding the scope of this structure-activity investigation, we show that the presence of the cyclic peptide is required for the induction of a strong, balanced Th1/Th2 immune response when compared with lipid and antigen only, and cyclic lipopeptide plus B/T cell antigen physical mixtures.
Collapse
Affiliation(s)
- Harrison Y R Madge
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Wenbin Huang
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Lachlan Gilmartin
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Berta Rigau-Planella
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Waleed M Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Zeinab G Khalil
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Prashamsa Koirala
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| | - Viviene S Santiago
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Robert J Capon
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Brisbane 4072, Australia
| | - Rachel J Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane 4072, Australia.
| |
Collapse
|
6
|
Mahmoud A, Toth I, Stephenson R. Developing an Effective Glycan-based Vaccine for Streptococcus Pyogenes. Angew Chem Int Ed Engl 2021; 61:e202115342. [PMID: 34935243 DOI: 10.1002/anie.202115342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Indexed: 11/11/2022]
Abstract
Streptococcus pyogenes is a primary infective agent that causes approximately 700 million human infections each year, resulting in more than 500,000 deaths. Carbohydrate-based vaccines are proven to be one of the most promising subunit vaccine candidates, as the bacterial glycan pattern(s) are different from mammalian cells and show increased pathogen serotype conservancy than the protein components. In this review we highlight reverse vaccinology for use in the development of subunit vaccines against S. pyogenes, and report reproducible methods of carbohydrate antigen production, in addition to the structure-immunogenicity correlation between group A carbohydrate epitopes and alternative vaccine antigen carrier systems. We also report recent advances used to overcome hurdles in carbohydrate-based vaccine development.
Collapse
Affiliation(s)
- Asmaa Mahmoud
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Istvan Toth
- The University of Queensland - Saint Lucia Campus: The University of Queensland, School of Chemistry and Molecular Biosciences, AUSTRALIA
| | - Rachel Stephenson
- The University of Queensland, School of Chemistry and Molecular Biosciences, The University of Queensland, 4068, Brisbane, AUSTRALIA
| |
Collapse
|
7
|
Khatun F, Dai CC, Rivera-Hernandez T, Hussein WM, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Immunogenicity Assessment of Cell Wall Carbohydrates of Group A Streptococcus via Self-Adjuvanted Glyco-lipopeptides. ACS Infect Dis 2021; 7:390-405. [PMID: 33533246 DOI: 10.1021/acsinfecdis.0c00722] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Identifying the immunogenic moieties and their precise structure of carbohydrates plays an important role for developing effective carbohydrate-based subunit vaccines. This study assessed the structure-immunogenicity relationship of carbohydrate moieties of a single repeating unit of group A carbohydrate (GAC) present on the cell wall of group A Streptococcus (GAS) using a rationally designed self-adjuvanted lipid-core peptide, instead of a carrier protein. Immunological evaluation of fully synthetic glyco-lipopeptides (particle size: 300-500 nm) revealed that construct consisting of higher rhamnose moieties (trirhamnosyl-lipopeptide) was able to induce enhanced immunogenic activity in mice, and GlcNAc moiety was not found to be an essential component of immunogenic GAC mimicked epitope. Trirhamnosyl-lipopeptide also showed 75-97% opsonic activity against four different clinical isolates of GAS and was comparable to a subunit peptide vaccine (J8-lipopeptide) which illustrated 65-96% opsonic activity.
Collapse
Affiliation(s)
- Farjana Khatun
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
8
|
Dai CC, Yang J, Hussein WM, Zhao L, Wang X, Khalil ZG, Capon RJ, Toth I, Stephenson RJ. Polyethylenimine: An Intranasal Adjuvant for Liposomal Peptide-Based Subunit Vaccine against Group A Streptococcus. ACS Infect Dis 2020; 6:2502-2512. [PMID: 32786276 DOI: 10.1021/acsinfecdis.0c00452] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Group A Streptococcus (GAS) and GAS-related infections are a worldwide challenge, with no commercial GAS vaccine available. Polyethylenimine (PEI) attaches to the cells' surface and delivers cargo into endosomal and cytosolic compartments. We hypothesized that this will confer mucosal adjuvant properties for peptide antigens against group A Streptococcus (GAS). In this study, we successfully demonstrated the development of PEI incorporated liposomes for the delivery of a lipopeptide-based vaccine (LCP-1) against GAS. Outbred mice were administrated with the vaccine formulations intranasally, and immunological investigation showed that the PEI liposomes elicited significant mucosal and systemic immunity with the production of IgA and IgG antibodies. Antibodies were shown to effectively opsonize multiple isolates of clinically isolated GAS. This proof-of-concept study showed the capability for PEI liposomes to act as a safe vehicle for the delivery of GAS peptide antigens to elicit immune responses against GAS infection, making PEI a promising addition to liposomal mucosal vaccines.
Collapse
Affiliation(s)
- Charles C. Dai
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Jieru Yang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Waleed M. Hussein
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Helwan 11795, Egypt
| | - Lili Zhao
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Xiumin Wang
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Key Laboratory of Feed Biotechnology, Ministry of Agriculture and Rural Affairs, Beijing 100081, China
| | - Zeinab G. Khalil
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Robert J. Capon
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland 4072, Australia
- School of Pharmacy, The University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Rachel J. Stephenson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|