1
|
Schwarz E, Jebbawi F, Keller G, Rhiner T, Fricker A, Waldern N, Canonica F, Schoster A, Fettelschoss-Gabriel A. Phenotypic Shift of an Inflammatory Eosinophil Subset into a Steady-State Resident Phenotype after 2 Years of Vaccination against IL-5 in Equine Insect Bite Hypersensitivity. Vet Sci 2024; 11:476. [PMID: 39453068 PMCID: PMC11512288 DOI: 10.3390/vetsci11100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/26/2024] Open
Abstract
Eosinophils play a key role in allergic diseases such as insect bite hypersensitivity (IBH). Together with Th2 cells, they shape the course of inflammation in associated type I/IVb allergies. Therefore, a virus-like particle (VLP)-based vaccine targeting equine interleukin-5 (eIL-5), eIL-5-CuMV-TT, was developed to interfere with the IL-5 dependency of eosinophils by inducing the production of anti-self-IL-5 antibodies and alleviating clinical signs in IBH-affected horses. A previous study highlighted the presence of two eosinophil subsets, steady-state resident eosinophils (rEos) and inflammatory eosinophils (iEos), circulating in the blood of healthy and IBH-affected horses, distinguishable by the expression of integrin CD49f. Furthermore, eIL-5-CuMV-TT 1st year vaccination showed a significant decrease of total eosinophils and, in particular, iEos. Nevertheless, the very few remaining eosinophils still shared an iEos phenotype, reflected by bigger size and higher granularity. The aim of this study was to follow up on the phenotype of eosinophils in the 2nd year of vaccination of IBH-affected horses with eIL-5-CuMV-TT. Using flow cytometry analysis of the blood of healthy, IBH, IBH-placebo, and IBH-vaccinated horses, the percentage and count of cells were compared between groups with a focus on pair analysis of eosinophils in 1st and 2nd year vaccinated horses. Our data showed comparably low levels of iEos and a significant increase of rEos in 2nd year compared to 1st year vaccinated horses, suggesting a phenotypic shift toward a resident-like eosinophil population, primarily associated with the phenotype of healthy horses. The reduction of size, granularity, and expression of integrin CD49f in the 2nd year suggests a benefit of long-term treatment with the eIL-5-CuMV-TT vaccine.
Collapse
Affiliation(s)
- Elio Schwarz
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Fadi Jebbawi
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Giulia Keller
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Tanya Rhiner
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Equine Department, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Anna Fricker
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Nina Waldern
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
| | - Fabia Canonica
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Angelika Schoster
- Equine Department, Vetsuisse Faculty, University of Zurich, 8006 Zurich, Switzerland;
| | - Antonia Fettelschoss-Gabriel
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (E.S.); (F.J.); (G.K.); (T.R.); (A.F.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, 8091 Schlieren, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
2
|
Gmel AI, Mikko S, Ricard A, Velie BD, Gerber V, Hamilton NA, Neuditschko M. Using high-density SNP data to unravel the origin of the Franches-Montagnes horse breed. Genet Sel Evol 2024; 56:53. [PMID: 38987703 PMCID: PMC11238448 DOI: 10.1186/s12711-024-00922-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The Franches-Montagnes (FM) is the last native horse breed of Switzerland, established at the end of the 19th century by cross-breeding local mares with Anglo-Norman stallions. We collected high-density SNP genotype data (Axiom™ 670 K Equine genotyping array) from 522 FM horses, including 44 old-type horses (OF), 514 European Warmblood horses (WB) from Sweden and Switzerland (including a stallion used for cross-breeding in 1990), 136 purebred Arabians (AR), 32 Shagya Arabians (SA), and 64 Thoroughbred (TB) horses, as introgressed WB stallions showed TB origin in their pedigrees. The aim of the study was to ascertain fine-scale population structures of the FM breed, including estimation of individual admixture levels and genomic inbreeding (FROH) by means of Runs of Homozygosity. RESULTS To assess fine-scale population structures within the FM breed, we applied a three-step approach, which combined admixture, genetic contribution, and FROH of individuals into a high-resolution network visualization. Based on this approach, we were able to demonstrate that population substructures, as detected by model-based clustering, can be either associated with a different genetic origin or with the progeny of most influential sires. Within the FM breed, admixed horses explained most of the genetic variance of the current breeding population, while OF horses only accounted for a small proportion of the variance. Furthermore, we illustrated that FM horses showed high TB admixture levels and we identified inconsistencies in the origin of FM horses descending from the Arabian stallion Doktryner. With the exception of WB, FM horses were less inbred compared to the other breeds. However, the relatively few but long ROH segments suggested diversity loss in both FM subpopulations. Genes located in FM- and OF-specific ROH islands had known functions involved in conformation and behaviour, two traits that are highly valued by breeders. CONCLUSIONS The FM remains the last native Swiss breed, clearly distinguishable from other historically introgressed breeds, but it suffered bottlenecks due to intensive selection of stallions, restrictive mating choices based on arbitrary definitions of pure breeding, and selection of rare coat colours. To preserve the genetic diversity of FM horses, future conservation managements strategies should involve a well-balanced selection of stallions (e.g., by integrating OF stallions in the FM breeding population) and avoid selection for rare coat colours.
Collapse
Affiliation(s)
- Annik Imogen Gmel
- Animal GenoPhenomics, Agroscope, Route de la Tioleyre 4, 1725, Posieux, Switzerland
- Equine Department, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8053, Zurich, Switzerland
| | - Sofia Mikko
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden
| | - Anne Ricard
- Institut National de la Recherche Agronomique, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Brandon D Velie
- Equine Genetics and Genomics Group, School of Life and Environmental Sciences, University of Sydney, RMC Gunn B19-603, Sydney, NSW, 2006, Australia
| | - Vinzenz Gerber
- Institut Suisse de Médecine Equine ISME, Vetsuisse Faculty, University of Bern, Länggassstrasse 124, 3012, Bern, Switzerland
| | - Natasha Anne Hamilton
- Sydney School of Veterinary Science, University of Sydney, Sydney, NSW, 2006, Australia
| | - Markus Neuditschko
- Animal GenoPhenomics, Agroscope, Route de la Tioleyre 4, 1725, Posieux, Switzerland.
| |
Collapse
|
3
|
Berreiros-Hortala H, Vilchez-Pinto G, Diaz-Perales A, Garrido-Arandia M, Tome-Amat J. Virus-like Particles as Vaccines for Allergen-Specific Therapy: An Overview of Current Developments. Int J Mol Sci 2024; 25:7429. [PMID: 39000536 PMCID: PMC11242184 DOI: 10.3390/ijms25137429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
Immune engineering and modulation are the basis of a novel but powerful tool to treat immune diseases using virus-like particles (VLPs). VLPs are formed by the viral capsid without genetic material making them non-infective. However, they offer a wide variety of possibilities as antigen-presenting platforms, resulting in high immunogenicity and high efficacy in immune modulation, with low allergenicity. Both animal and plant viruses are being studied for use in the treatment of food allergies. These formulations are combined with adjuvants, T-stimulatory epitopes, TLR ligands, and other immune modulators to modulate or enhance the immune response toward the presented allergen. Here, the authors present an overview of VLP production systems, their immune modulation capabilities, and the applicability of actual VLP-based formulations targeting allergic diseases.
Collapse
Affiliation(s)
- Helena Berreiros-Hortala
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Gonzalo Vilchez-Pinto
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Araceli Diaz-Perales
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Maria Garrido-Arandia
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | - Jaime Tome-Amat
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, Pozuelo de Alarcón, 28223 Madrid, Spain; (H.B.-H.); (G.V.-P.); (A.D.-P.); (M.G.-A.)
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| |
Collapse
|
4
|
Birkmann K, Jebbawi F, Waldern N, Hug S, Inversini V, Keller G, Holm A, Grest P, Canonica F, Schmid-Grendelmeier P, Fettelschoss-Gabriel A. Eosinophils Play a Surprising Leading Role in Recurrent Urticaria in Horses. Vaccines (Basel) 2024; 12:562. [PMID: 38932291 PMCID: PMC11209473 DOI: 10.3390/vaccines12060562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/28/2024] Open
Abstract
Urticaria, independent of or associated with allergies, is commonly seen in horses and often shows a high reoccurrence rate. Managing these horses is discouraging, and efficient treatment options are lacking. Due to an incidental finding in a study on horses affected by insect bite hypersensitivity using the eosinophil-targeting eIL-5-CuMV-TT vaccine, we observed the prevention of reoccurring seasonal urticaria in four subsequent years with re-vaccination. In an exploratory case series of horses affected with non-seasonal urticaria, we aimed to investigate the role of eosinophils in urticaria. Skin punch biopsies for histology and qPCR of eosinophil associated genes were performed. Further, two severe, non-seasonal, recurrent urticaria-affected horses were vaccinated using eIL-5-CuMV-TT, and urticaria flare-up was followed up with re-vaccination for several years. Eotaxin-2, eotaxin-3, IL-5, CCR5, and CXCL10 showed high sensitivity and specificity for urticarial lesions, while eosinophils were present in 50% of histological tissue sections. The eIL-5-CuMV-TT vaccine reduced eosinophil counts in blood, cleared clinical signs of urticaria, and even prevented new episodes of urticaria in horses with non-seasonal recurrent urticaria. This indicates that eosinophils play a leading role in urticaria in horses, and targeting eosinophils offers an attractive new treatment option, replacing the use of corticosteroids.
Collapse
Affiliation(s)
- Katharina Birkmann
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Equine Department, Veterinary Faculty, Ludwig Maximilians University Munich LMU, Sonnenstrasse 14, 85764 Oberschleißheim, Germany
| | - Fadi Jebbawi
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Nina Waldern
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
| | - Sophie Hug
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
| | - Victoria Inversini
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Giulia Keller
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Anja Holm
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Central VetPharma Consultancy, Hauchsvej 7, 4180 Sorø, Denmark
| | - Paula Grest
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland;
| | - Fabia Canonica
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| | - Peter Schmid-Grendelmeier
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
- Allergy Unit, Department of Dermatology, University Hospital Zurich, The Circle 59, 8058 Zurich-Airport, Switzerland
| | - Antonia Fettelschoss-Gabriel
- Evax AG, Im Binz 3, 8357 Guntershausen, Switzerland; (K.B.); (F.J.); (N.W.); (F.C.)
- Department of Dermatology, University Hospital Zurich, Wagistrasse 18, 8952 Schlieren, Switzerland;
- Faculty of Medicine, University of Zurich, 8032 Zurich, Switzerland
| |
Collapse
|
5
|
Aves KL, Guerra PR, Fresno AH, Saraiva MMS, Cox E, Bækbo PJ, Nielsen MA, Sander AF, Olsen JE. A Virus-like Particle-Based F4 Enterotoxigenic Escherichia coli Vaccine Is Inhibited by Maternally Derived Antibodies in Piglets but Generates Robust Responses in Sows. Pathogens 2023; 12:1388. [PMID: 38133272 PMCID: PMC10745950 DOI: 10.3390/pathogens12121388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
F4-positive enterotoxigenic Escherichia coli is associated with diarrhea and poor growth outcomes in neonatal and newly weaned piglets and is thus a major economic and welfare burden in the swine industry. Vaccination of sows with F4 fimbriae protects against the neonatal disease via passive transfer of maternal immunity. However, this strategy does not protect against infection post-weaning. Consequently, prevention and treatment methods in weaner pigs heavily rely on the use of antimicrobials. Therefore, in order to reduce antimicrobial consumption, more effective prophylactic alternatives are needed. In this study, we describe the development of a capsid virus-like particle (cVLP)-based vaccine targeting the major F4 fimbriae subunit and adhesion molecule, FaeG, and evaluate its immunogenicity in mice, piglets, and sows. cVLP-display significantly increased systemic and mucosal antibody responses towards the recombinant FaeG antigen in mice models. However, in piglets, the presence of anti-F4 maternally derived antibodies severely inhibited the induction of active humoral responses towards the FaeG antigen. This inhibition could not be overcome, even with the enhanced immunogenicity achieved via cVLP display. However, in sows, intramuscular vaccination with the FaeG.cVLP vaccine was able to generate robust IgG and IgA responses that were comparable with a commercial fimbriae-based vaccine, and which were effectively transferred to piglets via colostrum intake. These results demonstrate that cVLP display has the potential to improve the systemic humoral responses elicited against low-immunogenic antigens in pigs; however, this effect is dependent on the use of antigens, which are not the targets of pre-existing maternal immunity.
Collapse
Affiliation(s)
- Kara-Lee Aves
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Priscila R. Guerra
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Ana H. Fresno
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Mauro M. S. Saraiva
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| | - Eric Cox
- Laboratory of Immunology, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Poul J. Bækbo
- SEGES Innovation, Danish Pig Research Centre, Agro Food Park 15, DK-8200 Aarhus, Denmark
| | - Morten A. Nielsen
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Adam F. Sander
- Department of Immunology and Microbiology, University of Copenhagen, DK-2200 Copenhagen, Denmark
- AdaptVac, Ole Maaløes Vej 3, DK-2200 Copenhagen, Denmark
| | - John E. Olsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg, Denmark
| |
Collapse
|
6
|
Cox A, Stewart AJ. Insect Bite Hypersensitivity in Horses: Causes, Diagnosis, Scoring and New Therapies. Animals (Basel) 2023; 13:2514. [PMID: 37570323 PMCID: PMC10416928 DOI: 10.3390/ani13152514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/15/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Insect Bite Hypersensitivity (IBH, Queensland itch, sweet itch, equine summer eczema) is the most common pruritic disease of horses. It is most often caused by sensitivity to the saliva of Culicoides spp. of biting midges; however, it can also be caused by hypersensitivity to other insect species. The prevalence of IBH in horses is reported to be as high as 60% in some parts of the world. Due to the severe pruritus and effects of secondary self-trauma, IBH has animal welfare concerns, and there is currently no cure. Management of this condition is life-long, time consuming and costly. New grading systems to document disease severity are being validated, which will allow the comparison of clinical trial results of new and existing therapies. Management involves the minimisation of insect bites by use of stabling, fans, rugs and repellents. Symptomatic therapy involves the administration of systemic or topical corticosteroids, systemic antihistamines, and creams and sprays to promote skin healing and decrease inflammation. New immune-mediated therapeutics including vaccines, in addition to desensitisation procedures, show promise at controlling hypersensitivity reactions. This article will review aetiologic agents, pathophysiology, scoring systems and current and new therapies.
Collapse
Affiliation(s)
| | - Allison J. Stewart
- School of Veterinary Science, University of Queensland Gatton, 5391 Warrego Highway, Gatton, QLD 4343, Australia;
| |
Collapse
|
7
|
Marsella R, White S, Fadok VA, Wilson D, Mueller R, Outerbridge C, Rosenkrantz W. Equine allergic skin diseases: Clinical consensus guidelines of the World Association for Veterinary Dermatology. Vet Dermatol 2023; 34:175-208. [PMID: 37154488 DOI: 10.1111/vde.13168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/03/2023] [Accepted: 02/26/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Allergic skin diseases are common in horses worldwide. The most common causes are insect bites and environmental allergens. OBJECTIVES To review the current literature and provide consensus on pathogenesis, diagnosis, treatment and prevention. MATERIALS AND METHODS The authors reviewed the literature up to November 2022. Results were presented at North America Veterinary Dermatology Forum (2021) and European Veterinary Dermatology Congress (2021). The report was available to member organisations of the World Association for Veterinary Dermatology for feedback. CONCLUSIONS AND CLINICAL RELEVANCE Insect bite hypersensitivity (IBH) is the best characterised allergic skin disease. An immunoglobulin (Ig)E response against Culicoides salivary antigens is widely documented. Genetics and environmental factors play important roles. Tests with high sensitivity and specificity are lacking, and diagnosis of IBH is based on clinical signs, seasonality and response to insect control. Eosinophils, interleukin (IL)-5 and IL-31 are explored as therapeutic targets. Presently, the most effective treatment is insect avoidance. Existing evidence does not support allergen-specific immunotherapy (ASIT) using commercially available extracts of Culicoides. Hypersensitivity to environmental allergens (atopic dermatitis) is the next most common allergy. A role for IgE is supported by serological investigation, skin test studies and positive response to ASIT. Prospective, controlled, randomised studies are limited, and treatment relies largely on glucocorticoids, antihistamines and ASIT based on retrospective studies. Foods are known triggers for urticaria, yet their role in pruritic dermatitis is unknown. Recurrent urticaria is common in horses, yet our understanding is limited and focussed on IgE and T-helper 2 cell response. Prospective, controlled studies on treatments for urticaria are lacking. Glucocorticoids and antihistamines are primary reported treatments.
Collapse
Affiliation(s)
- R Marsella
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - S White
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - V A Fadok
- Zoetis, US PET CARE, Bellaire, Texas, USA
| | - D Wilson
- School of Clinical Veterinary Sciences, University of Bristol, Bristol, UK
| | - R Mueller
- Medizinische Keleintierklinik, Zentrum für klinische Tiermedizin, LMU, Munich, Germany
| | - C Outerbridge
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | | |
Collapse
|
8
|
White SD. Approach to the pruritic horse. J Am Vet Med Assoc 2023; 261:S66-S74. [PMID: 36638000 DOI: 10.2460/javma.22.10.0444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/05/2022] [Indexed: 01/14/2023]
Abstract
Pruritus in the horse may be due to several causes, the most common being a hypersensitivity response to salivary proteins in the Culicoides genera, which may coexist with atopic dermatitis, also known as an environmental allergy to pollens, molds, dust, storage mites, etc. Less common etiologies are food allergy and contact allergy, the latter often caused by owners applying various products to the skin. Other ectoparasites, such as Chorioptes mites, may also initiate pruritus. Secondary bacterial infections (usually Staphylococcus spp) may be pruritic in and of themselves. This article reviews the questions that need to be asked of owners to obtain a relevant history, always important for any organ system, but perhaps none more so than the skin. The various clinical findings such as alopecia and crusts and their location on the horse, diagnostic methods such as intradermal or serum testing for allergies, and subsequent hyposensitization are also discussed. Therapeutic options currently available for the potential underlying diseases, in particular for the hypersensitivity reactions to Culicoides spp or environmental allergens, are reviewed with the studies of hyposensitization over the last 40 years, as well as medications that may be effective. While the most common causes of pruritus in the horse are known, the current understanding of the pathophysiology still needs to be investigated, and consequently, the most effective treatments for those causes need to be improved. Newer research is discussed that may eventually add to the diagnostic and therapeutic options currently available for the pruritic horse.
Collapse
Affiliation(s)
- Stephen D. White
- School of Veterinary Medicine, University of California-Davis, Davis, CA
| |
Collapse
|
9
|
Schnabel CL, Fletemeyer B, Lübke S, Marti E, Wagner B, Alber G. CD154 Expression Indicates T Cell Activation Following Tetanus Toxoid Vaccination of Horses. Front Immunol 2022; 13:805026. [PMID: 35493462 PMCID: PMC9043809 DOI: 10.3389/fimmu.2022.805026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Despite the relevance of adaptive immunity against equine pathogens antigen-specific T cell responses of horses are not well characterized and the lack of insight into T cell responses hampers the understanding of the pathogeneses of important diseases. In this study we used tetanus toxoid (TT) as a well-defined antigen to characterize antigen-reactive T cells. Six healthy adult horses received a routine booster against tetanus with an immune stimulating complex (ISCOM)-based vaccine and were followed for 28 days. TT-specific serum antibodies were quantified by ELISA and increased in all horses by day 7 after vaccination. CD154 is an established indicator of antigen-reactive T helper cells in other species, but has not been characterized in horses. CD154 detection in equine PBMC by an anti-human CD154 antibody (clone 5C8) was confirmed by Western blots and then applied for flow cytometry. As a common indicator of equine T cell activation, cytokine induction was studied in parallel. T cells were analyzed by multicolor flow cytometry of PBMC after re-stimulation with TT in vitro. Reactive T helper (Th) cells were characterized by increased frequencies of CD4+CD154+ lymphocytes in in vitro TT-re-stimulated PBMC on day 14 after vaccination of the horses compared to pre-vaccination. The majority of all CD154+ cells after TT re-stimulation were CD4+ Th cells, but CD154 was also induced on CD4- cells albeit in lower frequencies. CD154+CD4+ Th cells were enriched in cytokine-expressing cells compared to CD154-CD4+ Th cells. Similar to the CD4+CD154+ frequencies, CD4+IL-4+, CD4+IFN-γ+ and CD4+TNF-α+ were increased after vaccination, but IL-4+ increased later than IFN-γ+ and CD4+TNF-α+, which already exceeded pre-vaccination frequencies on day 7. CD4+CD154+ frequencies correlated positively with those of CD4+IL-4+ (Th2) on day 14, and negatively with CD4+IFN-γ+ induction on day 7, but did not correlate with CD4+TNF-α+ frequencies or TT-specific antibody concentrations. CD154 appears to be a useful marker of antigen-reactive equine Th cells in combination with cytokine expression. The T cell analyses established here with TT can be applied to other antigens relevant for infections or allergies of horses and in horse models for translational research.
Collapse
Affiliation(s)
- Christiane L Schnabel
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Babette Fletemeyer
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Sabrina Lübke
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| | - Eliane Marti
- Clinical Immunology Group, Department for Clinical Research and Veterinary Public Health (VPH), Vetsuisse Faculty of the University of Bern, Bern, Switzerland
| | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Gottfried Alber
- Institute of Immunology, Faculty of Veterinary Medicine, Leipzig University, Leipzig, Germany
| |
Collapse
|
10
|
Brosnahan M. Molecular immunology and genomics: The future of multisystemic eosinophilic epitheliotropic disease. EQUINE VET EDUC 2022. [DOI: 10.1111/eve.13617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- M. Brosnahan
- College of Veterinary Medicine Midwestern University Glendale Arizona USA
| |
Collapse
|
11
|
Marti E, Novotny EN, Cvitas I, Ziegler A, Wilson AD, Torsteinsdottir S, Fettelschoss‐Gabriel A, Jonsdottir S. Immunopathogenesis and immunotherapy of
Culicoides
hypersensitivity in horses: an update. Vet Dermatol 2021. [DOI: 10.1111/vde.13042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eliane Marti
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Dermfocus, Vetsuisse Faculty University of Bern Langgassstrasse 120 Bern 3001 Switzerland
| | - Ella N. Novotny
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Iva Cvitas
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - Anja Ziegler
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
| | - A. Douglas Wilson
- School of Clinical Veterinary Sciences University of Bristol Langford House Bristol BS40 5DU UK
| | | | - Antonia Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich Wagistrasse 12 Schlieren 8952 Switzerland
- Faculty of Medicine University of Zurich Switzerland
- Evax AG Hörnlistrasse 3 Münchwilen 9542 Switzerland
| | - Sigridur Jonsdottir
- Department of Clinical Research and Veterinary Public Health Vetsuisse Faculty‐University of Bern Länggass‐strasse 124 Bern 3012Switzerland
- Institute for Experimental Pathology, Keldur Biomedical Center University of Iceland Reykjavik Iceland
| |
Collapse
|
12
|
Pechsrichuang P, Namwongnao S, Jacquet A. Bioengineering of Virus-like Particles for the Prevention or Treatment of Allergic Diseases. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2021; 13:23-41. [PMID: 33191675 PMCID: PMC7680827 DOI: 10.4168/aair.2021.13.1.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 11/26/2022]
Abstract
Recent findings on the mechanism of allergen-specific immunotherapy (AIT) have revisited the role of immunoglobulin G (IgG) as the development of specific blocking IgG antibodies appeared critical for the successful suppression of T-helper 2 (Th2)-biased allergic responses. Consequently, any form of molecular AIT-promoting potent allergen-specific neutralizing antibodies would be preferred to conventional administration of allergen extracts. The potent immunogenicity of virus-like particles (VLPs) could be harnessed for that purpose. The particle size (20–200 nm) optimizes uptake by antigen-presenting cells as well as lymphatic trafficking. Moreover, the display of antigens in repetitive arrays promotes potent B cell activation for the development of sustained antibody responses. The presentation of self-antigens on the particle surface was even capable to break B cell tolerance. In this review, we describe the immunomodulatory properties of the 3 VLP-based strategies designed so far for the treatment of allergic disease: VLP packaged with CpG motifs as well as chimeric particles displaying pro-Th2/Th2 cytokines or allergens (full-length or B cell epitopes).
Collapse
Affiliation(s)
- Phornsiri Pechsrichuang
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Supannika Namwongnao
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Alain Jacquet
- Center of Excellence in Vaccine Research and Development, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
13
|
White SL. Control of chronic allergic pruritus in horses. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- S. L. White
- Department of Large Animal Medicine College of Veterinary Medicine University of Georgia Athens Georgia USA
| |
Collapse
|
14
|
Fettelschoss V, Olomski F, Birkmann K, Kündig TM, Bergvall K, Fettelschoss‐Gabriel A. Interleukin 31 and targeted vaccination in a case series of six horses with chronic pruritus. EQUINE VET EDUC 2020. [DOI: 10.1111/eve.13408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- V. Fettelschoss
- Department of Dermatology University Hospital Zurich SchlierenSwitzerland
- Faculty of Medicine University of Zurich ZurichSwitzerland
- Evax AG MünchwilenSwitzerland
| | - F. Olomski
- Department of Dermatology University Hospital Zurich SchlierenSwitzerland
- Faculty of Medicine University of Zurich ZurichSwitzerland
- Evax AG MünchwilenSwitzerland
| | | | - T. M. Kündig
- Faculty of Medicine University of Zurich ZurichSwitzerland
- Department of Dermatology University Hospital Zurich Zurich Switzerland
| | - K. Bergvall
- Department of Clinical Sciences Swedish University of Agriculture Uppsala Sweden
| | - A. Fettelschoss‐Gabriel
- Department of Dermatology University Hospital Zurich SchlierenSwitzerland
- Faculty of Medicine University of Zurich ZurichSwitzerland
- Evax AG MünchwilenSwitzerland
| |
Collapse
|
15
|
Pali-Schöll I, DeBoer DJ, Alessandri C, Seida AA, Mueller RS, Jensen-Jarolim E. Formulations for Allergen Immunotherapy in Human and Veterinary Patients: New Candidates on the Horizon. Front Immunol 2020; 11:1697. [PMID: 32849594 PMCID: PMC7417425 DOI: 10.3389/fimmu.2020.01697] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Allergen immunotherapy is currently the only causal treatment for allergic diseases in human beings and animals. It aims to re-direct the immune system into a tolerogenic or desensitized state. Requirements include clinical efficacy, safety, and schedules optimizing patient or owner compliance. To achieve these goals, specific allergens can be formulated with adjuvants that prolong tissue deposition and support uptake by antigen presenting cells, and/or provide a beneficial immunomodulatory action. Here, we depict adjuvant formulations being investigated for human and veterinary allergen immunotherapy.
Collapse
Affiliation(s)
- Isabella Pali-Schöll
- University of Veterinary Medicine, Vienna, Austria.,Institute of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Douglas J DeBoer
- Dermatology/Allergy Section, Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, WI, United States
| | | | - Ahmed Adel Seida
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ralf S Mueller
- Centre for Clinical Veterinary Medicine, University of Munich, Munich, Germany
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Center of Physiology, Pathophysiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|