1
|
Mpingabo PI, Ylade M, Aogo RA, Crisostomo MV, Thiono DJ, Daag JV, Agrupis KA, Escoto AC, Raimundi-Rodriguez GL, Odio CD, Fernandez MA, White L, de Silva AM, Deen J, Katzelnick LC. Envelope-dimer epitope-like broadly protective antibodies against dengue in children following natural infection and vaccination. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306574. [PMID: 38746253 PMCID: PMC11092691 DOI: 10.1101/2024.04.30.24306574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cross-reactive antibodies (Abs) to epitopes that span envelope proteins on the virion surface are hypothesized to protect against dengue. Here, we measured Abs targeting the quaternary envelope dimer epitope (EDE) as well as neutralizing and binding Abs and evaluate their association with dengue virus (DENV) infection, vaccine response, and disease outcome in dengue vaccinated and unvaccinated children (n=252) within a longitudinal cohort in Cebu, Philippines (n=2,996). Abs targeting EDE were prevalent and strongly associated with broad neutralization of DENV1-4 in those with baseline multitypic immunity. Subsequent natural infection and vaccination boosted EDE-like, neutralizing, and binding Abs. EDE-like Abs were associated with reduced dengue risk and mediated the protective effect of binding and neutralizing Abs on symptomatic and severe dengue. Thus, Abs targeting quaternary epitopes help explain broad cross protection in those with multiple prior DENV exposures, making them useful for evaluation and development of future vaccines and therapeutics.
Collapse
|
2
|
Keelapang P, Kraivong R, Pulmanausahakul R, Sriburi R, Prompetchara E, Kaewmaneephong J, Charoensri N, Pakchotanon P, Duangchinda T, Suparattanagool P, Luangaram P, Masrinoul P, Mongkolsapaya J, Screaton G, Ruxrungtham K, Auewarakul P, Yoksan S, Malasit P, Puttikhunt C, Ketloy C, Sittisombut N. Blockade-of-Binding Activities toward Envelope-Associated, Type-Specific Epitopes as a Correlative Marker for Dengue Virus-Neutralizing Antibody. Microbiol Spectr 2023; 11:e0091823. [PMID: 37409936 PMCID: PMC10433959 DOI: 10.1128/spectrum.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming. In this study, a blockade-of-binding enzyme-linked immunoassay was developed to assess antibody activity by using a set of neutralizing anti-E monoclonal antibodies and blood samples from dengue virus-infected or -immunized macaques. Diluted blood samples were incubated with plate-bound dengue virus particles before the addition of an enzyme-conjugated antibody specific to the epitope of interest. Based on blocking reference curves constructed using autologous purified antibodies, sample blocking activity was determined as the relative concentration of unconjugated antibody that resulted in the same percent signal reduction. In separate DENV-1-, -2-, -3-, and -4-related sets of samples, moderate to strong correlations of the blocking activity with neutralizing antibody titers were found with the four type-specific antibodies 1F4, 3H5, 8A1, and 5H2, respectively. Significant correlations were observed for single samples taken 1 month after infection as well as samples drawn before and at various time points after infection/immunization. Similar testing using a cross-reactive EDE-1 antibody revealed a moderate correlation between the blocking activity and the neutralizing antibody titer only for the DENV-2-related set. The potential usefulness of the blockade-of-binding activity as a correlative marker of neutralizing antibodies against dengue viruses needs to be validated in humans. IMPORTANCE This study describes a blockade-of-binding assay for the determination of antibodies that recognize a selected set of serotype-specific or group-reactive epitopes in the envelope of dengue virus. By employing blood samples collected from dengue virus-infected or -immunized macaques, moderate to strong correlations of the epitope-blocking activities with the virus-neutralizing antibody titers were observed with serotype-specific blocking activities for each of the four dengue serotypes. This simple, rapid, and less laborious method should be useful for the evaluation of antibody responses to dengue virus infection and may serve as, or be a component of, an in vitro correlate of protection against dengue in the future.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Romchat Kraivong
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamart Kaewmaneephong
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nicha Charoensri
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarakul Pakchotanon
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thaneeya Duangchinda
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasit Luangaram
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Juthathip Mongkolsapaya
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| |
Collapse
|
3
|
Vista FES, Tantengco OAG, Dispo MD, Opiso DMS, Badua CLDC, Gerardo JPZ, Perez JRM, Baldo KAT, Chao DY, Dalmacio LMM. Trends in ELISA-Based Flavivirus IgG Serosurveys: A Systematic Review. Trop Med Infect Dis 2023; 8:tropicalmed8040224. [PMID: 37104349 PMCID: PMC10143827 DOI: 10.3390/tropicalmed8040224] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023] Open
Abstract
Flaviviruses include virus species that are major public health threats worldwide. To determine the immunity landscape of these viruses, seroprevalence studies are often performed using IgG ELISA, which is a simple and rapid alternative to the virus neutralization test. In this review, we aim to describe the trends in flavivirus IgG ELISA-based serosurveys. A systematic literature review using six databases was performed to collate cohort and cross-sectional studies performed on the general population. A total of 204 studies were included in this review. The results show that most studies were performed on dengue virus (DENV), whereas Japanese Encephalitis Virus (JEV) was the least studied. For geographic distribution, serosurveys followed known disease prevalence. Temporally, the number of serosurveys increased after outbreaks and epidemics except for JEV, for which studies were performed to demonstrate the effectiveness of vaccination campaigns. Commercial kits were more commonly used than in-house assays for DENV, West Nile Virus (WNV), and Zika virus (ZIKV). Overall, most studies employed an indirect ELISA format, and the choice of antigens varied per virus. This review shows that flavivirus epidemiology is related to the regional and temporal distribution of serosurveys. It also highlights that endemicity, cross-reactivities, and kit availabilities affect assay choice in serosurveys.
Collapse
Affiliation(s)
- Fatima Ericka S Vista
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Ourlad Alzeus G Tantengco
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
- Department of Biology, College of Science, De La Salle University, Manila 0922, Philippines
| | - Micah D Dispo
- Department of Epidemiology and Biostatistics, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Danna Mae S Opiso
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Christian Luke D C Badua
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - John Patrick Z Gerardo
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Juan Raphael M Perez
- College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Karol Ann T Baldo
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| | - Day-Yu Chao
- Graduate Institute of Microbiology and Public Health, National Chung Hsing University, Taichung 40227, Taiwan
| | - Leslie Michelle M Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines
| |
Collapse
|
4
|
Miao B, Yakubu S, Zhu Q, Issaka E, Zhang Y, Adams M. A Review on Tetrabromobisphenol A: Human Biomonitoring, Toxicity, Detection and Treatment in the Environment. Molecules 2023; 28:2505. [PMID: 36985477 PMCID: PMC10054480 DOI: 10.3390/molecules28062505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a known endocrine disruptor employed in a range of consumer products and has been predominantly found in different environments through industrial processes and in human samples. In this review, we aimed to summarize published scientific evidence on human biomonitoring, toxic effects and mode of action of TBBPA in humans. Interestingly, an overview of various pretreatment methods, emerging detection methods, and treatment methods was elucidated. Studies on exposure routes in humans, a combination of detection methods, adsorbent-based treatments and degradation of TBBPA are in the preliminary phase and have several limitations. Therefore, in-depth studies on these subjects should be considered to enhance the accurate body load of non-invasive matrix, external exposure levels, optimal design of combined detection techniques, and degrading technology of TBBPA. Overall, this review will improve the scientific comprehension of TBBPA in humans as well as the environment, and the breakthrough for treating waste products containing TBBPA.
Collapse
Affiliation(s)
- Baoji Miao
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Salome Yakubu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Qingsong Zhu
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Eliasu Issaka
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yonghui Zhang
- Henan International Joint Laboratory of Nano-Photoelectric Magnetic Materials, School of Materials Science and Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Mabruk Adams
- School of Civil Engineering, National University of Ireland, H91 TK33 Galway, Ireland
| |
Collapse
|
5
|
Mao ZQ, Minakawa N, Moi ML. Novel Antiviral Efficacy of Hedyotis diffusa and Artemisia capillaris Extracts against Dengue Virus, Japanese Encephalitis Virus, and Zika Virus Infection and Immunoregulatory Cytokine Signatures. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11192589. [PMID: 36235456 PMCID: PMC9571899 DOI: 10.3390/plants11192589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/25/2023]
Abstract
Currently, there are no specific therapeutics for flavivirus infections, including dengue virus (DENV) and Zika virus (ZIKV). In this study, we evaluated extracts from the plants Hedyotis diffusa (HD) and Artemisia capillaris (AC) to determine the antiviral activity against DENV, ZIKV, and Japanese encephalitis virus (JEV). HD and AC demonstrated inhibitory activity against JEV, ZIKV, and DENV replication and reduced viral RNA levels in a dose-responsive manner, with non-cytotoxic concentration ranging from 0.1 to 10 mg/mL. HD and AC had low cytotoxicity to Vero cells, with CC50 values of 33.7 ± 1.6 and 30.3 ± 1.7 mg/mL (mean ± SD), respectively. The anti-flavivirus activity of HD and AC was also consistent in human cell lines, including human glioblastoma (T98G), human chronic myeloid leukemia (K562), and human embryonic kidney (HEK-293T) cells. Viral-infected, HD-treated cells demonstrated downregulation of cytokines including CCR1, CCL26, CCL15, CCL5, IL21, and IL17C. In contrast, CCR1, CCL26, and AIMP1 were elevated following AC treatment in viral-infected cells. Overall, HD and AC plant extracts demonstrated flavivirus replication inhibitory activity, and together with immunoregulatory cytokine signatures, these results suggest that HD and AC possess bioactive compounds that may further be refined as promising candidates for clinical applications.
Collapse
Affiliation(s)
- Zhan Qiu Mao
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Noboru Minakawa
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Institute of Tropical Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
- School of International Health, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Lima MRQ, Nunes PCG, Dos Santos FB. Serological Diagnosis of Dengue. Methods Mol Biol 2022; 2409:173-196. [PMID: 34709642 DOI: 10.1007/978-1-0716-1879-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A reliable and specific diagnosis is imperative in viral diagnosis, both for clinical management and surveillance, and to ensure that early treatment and control measures are carried out. The number of days of illness is important to choose the most appropriate method to be used and for the correct interpretation of the results obtained. Specific IgM is elicited after that period, indicating an active infection and usually lasts up to 3 months. However, in DENV secondary infections, IgM levels may be significantly lower or undetectable. After 10-12 days, a lifetime specific IgG is produced. Routinely, the laboratory diagnosis of DENV infections can be performed by viral isolation and/or detection of viral nucleic acid, serological assays for the detection of specific antibodies (IgM/IgG), antigen (NS1) and the detection of viral antigens in tissues, which are suitable during certain phases of the disease. For serological diagnosis, serum, plasma, or cerebrospinal fluid (CSF) samples may be investigated. If the test is carried out a few days after collection, the specimens can be stored at 4 °C, since the immunoglobulins are stable in serum or plasma. If the storage period is extended, the material must be kept at -20 °C or -70 °C. In serology, several methods can be used to detect specific viral antigens and/or antibodies, produced by the host in response to DENV infection. Routinely, serological tests include the hemagglutination inhibition (HI) assay, the plaque reduction neutralizing test (PRNT), the gold standard assay for dengue immune response characterization, and ELISAs to detect IgM (MAC-ELISA) and IgG (IgG-ELISA).
Collapse
Affiliation(s)
- Monique R Q Lima
- Laboratório Estratégico de Diagnóstico (LED), Centro de Desenvolvimento Científico, Instituto Butantan, São Paulo, Brazil
| | - Priscila C G Nunes
- Laboratório Municipal de Saúde Pública (LASP), Laboratório de Virologia e Biotério, Subsecretaria de Vigilância, Fiscalização Sanitária e Controle de Zoonoses, Rio de Janeiro, Brazil
- Superintendência de Informações Estratégicas de Vigilância em Saúde (SIEVS/RJ), Secretaria Estadual de Saúde, Rio de Janeiro, Brazil
| | - Flávia B Dos Santos
- Laboratório de Imunologia Viral (LIV), Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Fukuta M, Nguyen CT, Nguyen TTT, Nguyen TTN, Vu TBH, Takemura T, Nguyen LKH, Inoue S, Morita K, Le TQM, Hasebe F, Moi ML. Discrepancies in Infectivity of Flavivirus and SARS-CoV-2 Clinical Samples: An Improved Assay for Infectious Virus Shedding and Viremia Assessment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189845. [PMID: 34574767 PMCID: PMC8465741 DOI: 10.3390/ijerph18189845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/11/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022]
Abstract
Infectivity and neutralizing antibody titers of flavivirus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are frequently measured using the conventional plaque assay. While the assay is useful in the determination of infectivity, conventional plaque assays generally possess lower sensitivity and are time-consuming compared to nucleic acid amplification tests. In this study, a microcrystalline cellulose (MCC), Avicel, was evaluated as an alternative to the conventional virus overlay medium, methylcellulose, for a plaque assay. The plaque assay was performed using dengue and COVID-19 clinical samples and laboratory-established flavivirus and SARS-CoV-2 strains. In virus titration of clinical samples, the plaques were significantly larger, and the virus titers were higher when Avicel MCC-containing overlay medium was used than with conventional methylcellulose overlay medium. In addition, for some clinical samples and laboratory virus strains, infectious particles were detected as plaques in the Avicel MCC-containing medium, but not in the conventional methylcellulose medium. The results suggest that the viremia titer determined using the new overlay medium containing Avicel MCC may better reflect the innate infectious and plaque-forming capabilities of clinical samples and better reflect virus infectivity.
Collapse
Affiliation(s)
- Mizuki Fukuta
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
| | - Co Thach Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Thi Thu Thuy Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Thi Thanh Ngan Nguyen
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Thi Bich Hau Vu
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Taichiro Takemura
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Le Khanh Hang Nguyen
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Shingo Inoue
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Thi Quynh Mai Le
- National Institute of Hygiene and Epidemiology, Hanoi 10000, Vietnam; (C.T.N.); (T.T.T.N.); (T.B.H.V.); (L.K.H.N.); (T.Q.M.L.)
| | - Futoshi Hasebe
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
| | - Meng Ling Moi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan; (M.F.); (T.T.N.N.); (T.T.); (S.I.); (K.M.); (F.H.)
- World Health Organization Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan
- Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- Correspondence: or ; Tel.: +81-95-819-7829
| |
Collapse
|
8
|
Fukuta M, Mao ZQ, Morita K, Moi ML. Stability and Infectivity of SARS-CoV-2 and Viral RNA in Water, Commercial Beverages, and Bodily Fluids. Front Microbiol 2021; 12:667956. [PMID: 34025624 PMCID: PMC8131666 DOI: 10.3389/fmicb.2021.667956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
The stability and infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in liquid samples are of great concern to virus transmission via common beverages and sewage water. Here, we investigated the stability of SARS-CoV-2 in 32 liquids including common beverages, bodily fluids, and commonly used viral transport media. Our results showed that the infectious virus could be recovered up to 77-days from common beverages including milk and water. Viral RNA could be detected at high levels in all samples up to 28-days, indicating that while viral RNA demonstrates higher stability than infectivity, viral RNA levels do not reflect the infectious capability of SARS-CoV-2. These results indicate that SARS-CoV-2 is highly stable in optimal conditions and a sufficient control measure is needed in reducing the risk of exposure and controlling and preventing future outbreaks.
Collapse
Affiliation(s)
- Mizuki Fukuta
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Zhan Qiu Mao
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan.,WHO Global Reference Laboratory for COVID-19, WHO Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Meng Ling Moi
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Nagasaki University, Nagasaki, Japan.,WHO Global Reference Laboratory for COVID-19, WHO Collaborating Center for Reference and Research on Tropical and Emerging Virus Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Ho AD, Verkerke H, Allen JW, Saeedi BJ, Boyer D, Owens J, Shin S, Horwath M, Patel K, Paul A, Wu SC, Chonat S, Zerra P, Lough C, Roback JD, Neish A, Josephson CD, Arthur CM, Stowell SR. An automated approach to determine antibody endpoint titers for COVID-19 by an enzyme-linked immunosorbent assay. Immunohematology 2021; 37:33-43. [PMID: 33962490 DOI: 10.21307/immunohematology-2021-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While a variety of therapeutic options continue to emerge for COVID-19 treatment, convalescent plasma (CP) has been used as a possible treatment option early in the pandemic. One of the most significant challenges with CP therapy, however, both when defining its efficacy and implementing its approach clinically, is accurately and efficiently characterizing an otherwise heterogenous therapeutic treatment. Given current limitations, our goal is to leverage a SARS antibody testing platform with a newly developed automated endpoint titer analysis program to rapidly define SARS-CoV-2 antibody levels in CP donors and hospitalized patients. A newly developed antibody detection platform was used to perform a serial dilution enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G, IgM, and IgA SARS-CoV-2 antibodies. Data were then analyzed using commercially available software, GraphPad Prism, or a newly developed program developed in Python called TiterScape, to analyze endpoint titers. Endpoint titer calculations and analysis times were then compared between the two analysis approaches. Serial dilution analysis of SARS-CoV-2 antibody levels revealed a high level of heterogeneity between individuals. Commercial platform analysis required significant time for manual data input and extrapolated endpoint titer values when the last serial dilution was above the endpoint cutoff, occasionally producing erroneously high results. By contrast, TiterScape processed 1008 samples for endpoint titer results in roughly 14 minutes compared with the 8 hours required for the commercial software program analysis. Equally important, results generated by TiterScape and Prism were highly similar, with differences averaging 1.26 ± 0.2 percent (mean ± SD). The pandemic has created unprecedented challenges when seeking to accurately test large numbers of individuals for SARS-CoV-2 antibody levels with a rapid turnaround time. ELISA platforms capable of serial dilution analysis coupled with a highly flexible software interface may provide a useful tool when seeking to define endpoint titers in a high-throughput manner. Immunohematology 2021;37:33-43. While a variety of therapeutic options continue to emerge for COVID-19 treatment, convalescent plasma (CP) has been used as a possible treatment option early in the pandemic. One of the most significant challenges with CP therapy, however, both when defining its efficacy and implementing its approach clinically, is accurately and efficiently characterizing an otherwise heterogenous therapeutic treatment. Given current limitations, our goal is to leverage a SARS antibody testing platform with a newly developed automated endpoint titer analysis program to rapidly define SARS-CoV-2 antibody levels in CP donors and hospitalized patients. A newly developed antibody detection platform was used to perform a serial dilution enzyme-linked immunosorbent assay (ELISA) for immunoglobulin (Ig)G, IgM, and IgA SARS-CoV-2 antibodies. Data were then analyzed using commercially available software, GraphPad Prism, or a newly developed program developed in Python called TiterScape, to analyze endpoint titers. Endpoint titer calculations and analysis times were then compared between the two analysis approaches. Serial dilution analysis of SARS-CoV-2 antibody levels revealed a high level of heterogeneity between individuals. Commercial platform analysis required significant time for manual data input and extrapolated endpoint titer values when the last serial dilution was above the endpoint cutoff, occasionally producing erroneously high results. By contrast, TiterScape processed 1008 samples for endpoint titer results in roughly 14 minutes compared with the 8 hours required for the commercial software program analysis. Equally important, results generated by TiterScape and Prism were highly similar, with differences averaging 1.26 ± 0.2 percent (mean ± SD). The pandemic has created unprecedented challenges when seeking to accurately test large numbers of individuals for SARS-CoV-2 antibody levels with a rapid turnaround time. ELISA platforms capable of serial dilution analysis coupled with a highly flexible software interface may provide a useful tool when seeking to define endpoint titers in a high-throughput manner. Immunohematology 2021;37:33–43.
Collapse
Affiliation(s)
- A D Ho
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , and Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - H Verkerke
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , and Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - J W Allen
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA , and Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - B J Saeedi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - D Boyer
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - J Owens
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - S Shin
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - M Horwath
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - K Patel
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - A Paul
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - S-C Wu
- Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA
| | - S Chonat
- Department of Pediatrics, Emory University School of Medicine , Atlanta, GA
| | - P Zerra
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - C Lough
- Lifesouth Blood Donation Services , Gainesville, FL
| | - J D Roback
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - A Neish
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - C D Josephson
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - C M Arthur
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , Atlanta, GA
| | - S R Stowell
- Center for Transfusion Medicine and Cellular Therapies, and Department of Pathology and Laboratory Medicine, Emory University School of Medicine , 201 Dowman Drive, Atlanta, GA 30322 , and Joint Program in Transfusion Medicine, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School , 630E New Research Building, 77 Avenue Louis Pasteur, Boston, MA 02115
| |
Collapse
|