1
|
Umar M, Afzal H, Murtaza A, Cheng LT. Lipoprotein Signal Peptide as Adjuvants: Leveraging Lipobox-Driven TLR2 Activation in Modern Vaccine Design. Vaccines (Basel) 2025; 13:36. [PMID: 39852815 PMCID: PMC11769378 DOI: 10.3390/vaccines13010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/26/2025] Open
Abstract
Toll-like receptor 2 (TLR2) signaling is a pivotal component of immune system activation, and it is closely linked to the lipidation of bacterial proteins. This lipidation is guided by bacterial signal peptides (SPs), which ensure the precise targeting and membrane anchoring of these proteins. The lipidation process is essential for TLR2 recognition and the activation of robust immune responses, positioning lipidated bacterial proteins as potent immunomodulators and adjuvants for vaccines against bacterial-, viral-, and cancer-related antigens. The structural diversity and cleavage pathways of bacterial SPs are critical in determining lipidation efficiency and protein localization, influencing their immunogenic potential. Recent advances in bioinformatics have significantly improved the prediction of SP structures and cleavage sites, facilitating the rational design of recombinant lipoproteins optimized for immune activation. Moreover, the use of SP-containing lipobox motifs, as adjuvants to lipidate heterologous proteins, has expanded the potential of vaccines targeting a broad range of pathogens. However, challenges persist in expressing lipidated proteins, particularly within heterologous systems. These challenges can be addressed by optimizing expression systems, such as engineering E. coli strains for enhanced lipidation. Thus, lipoprotein signal peptides (SPs) demonstrate remarkable versatility as adjuvants in vaccine development, diagnostics, and immune therapeutics, highlighting their essential role in advancing immune-based strategies to combat diverse pathogens.
Collapse
Affiliation(s)
- Muhammad Umar
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Haroon Afzal
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| | - Asad Murtaza
- Faculty of Biosciences, Fisheries and Economics, Norwegian College of Fishery Science, UiT—The Arctic University of Norway, P.O. Box 6050 Tromsø, Norway
| | - Li-Ting Cheng
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
- International Program in Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan
| |
Collapse
|
2
|
Brendel M, Kohler TP, Neufend JV, Puppe A, Gisch N, Hammerschmidt S. Lipoteichoic Acids Are Essential for Pneumococcal Colonization and Membrane Integrity. J Innate Immun 2024; 16:370-384. [PMID: 38901409 PMCID: PMC11324232 DOI: 10.1159/000539934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024] Open
Abstract
INTRODUCTION The hydrophilic, polymeric chain of the lipoteichoic acid (LTA) of the Gram-positive pathobiont Streptococcus pneumoniae is covalently linked to the glycosylglycerolipid α-d-glucopyranosyl-(1,3)-diacylglycerol by the LTA ligase TacL, leading to its fixation in the cytoplasmic membrane. Pneumococcal LTA, sharing identical repeating units with the wall teichoic acids (WTA), is dispensable for normal growth but required for full virulence in invasive infections. METHODS Mutants deficient in TacL and complemented strains constructed were tested for their growth, resistance against oxidative stress, and susceptibility against antimicrobial peptides. Further, the membrane fluidity of pneumococci, their capability to adhere to lung epithelial cells, and virulence in a Galleria mellonella as well as intranasal mouse infection model were assessed. RESULTS In the present study, we indicate that LTA is already indispensable for pneumococcal adherence to human nasopharyngeal cells and colonization in an intranasal mouse infection model. Mutants deficient for TacL did not show morphological defects. However, our analysis of pneumococcal membranes in different serotypes showed an altered membrane fluidity and surface protein abundance of lipoproteins in mutants deficient for LTA but not WTA. These mutants had a decreased membrane fluidity, exhibited higher amounts of lipoproteins, and showed an increased susceptibility to antimicrobial peptides. In complemented mutant strains, this defect was fully restored. CONCLUSION Taken together, LTA is crucial for colonization and required to effectively protect pneumococci from innate immune defence mechanisms by maintaining the membrane integrity.
Collapse
Affiliation(s)
- Max Brendel
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Thomas P. Kohler
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Janine V. Neufend
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Astrid Puppe
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
3
|
Paulikat AD, Schwudke D, Hammerschmidt S, Voß F. Lipidation of pneumococcal proteins enables activation of human antigen-presenting cells and initiation of an adaptive immune response. Front Immunol 2024; 15:1392316. [PMID: 38711516 PMCID: PMC11070533 DOI: 10.3389/fimmu.2024.1392316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Streptococcus pneumoniae remains a significant global threat, with existing vaccines having important limitations such as restricted serotype coverage and high manufacturing costs. Pneumococcal lipoproteins are emerging as promising vaccine candidates due to their surface exposure and conservation across various serotypes. While prior studies have explored their potential in mice, data in a human context and insights into the impact of the lipid moiety remain limited. In the present study, we examined the immunogenicity of two pneumococcal lipoproteins, DacB and MetQ, both in lipidated and non-lipidated versions, by stimulation of primary human immune cells. Immune responses were assessed by the expression of common surface markers for activation and maturation as well as cytokines released into the supernatant. Our findings indicate that in the case of MetQ lipidation was crucial for activation of human antigen-presenting cells such as dendritic cells and macrophages, while non-lipidated DacB demonstrated an intrinsic potential to induce an innate immune response. Nevertheless, immune responses to both proteins were enhanced by lipidation. Interestingly, following stimulation of dendritic cells with DacB, LipDacB and LipMetQ, cytokine levels of IL-6 and IL-23 were significantly increased, which are implicated in triggering potentially important Th17 cell responses. Furthermore, LipDacB and LipMetQ were able to induce proliferation of CD4+ T cells indicating their potential to induce an adaptive immune response. These findings contribute valuable insights into the immunogenic properties of pneumococcal lipoproteins, emphasizing their potential role in vaccine development against pneumococcal infections.
Collapse
Affiliation(s)
- Antje D. Paulikat
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Dominik Schwudke
- Division of Bioanalytical Chemistry, Research Center Borstel - Leibniz Lung Center, Borstel, Germany
- German Center for Infection Research, Thematic Translational Unit Tuberculosis, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
- German Center for Lung Research (DZL), Airway Research Center North (ARCN), Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Sven Hammerschmidt
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| | - Franziska Voß
- Department of Molecular Genetics and Infection Biology, Interfaculty Institute of Genetics and Functional Genomics, Center for Functional Genomics of Microbes, University of Greifswald, Greifswald, Germany
| |
Collapse
|
4
|
Kaur R, Mangiafesto J, Pryharski K, Rasam S, Zagursky R, Pichichero M. Expression conditions and characterization of a novelly constructed lipoprotein intended as a vaccine to prevent human Haemophilus influenzae infections. J Biol Chem 2023; 299:105031. [PMID: 37437888 PMCID: PMC10407732 DOI: 10.1016/j.jbc.2023.105031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/16/2023] [Accepted: 07/01/2023] [Indexed: 07/14/2023] Open
Abstract
Bacterial lipoproteins are structurally divided into two groups, based on their lipid moieties: diacylated (present in Gram-positive bacteria) and triacylated (present in some Gram-positive and most Gram-negative bacteria). Diacylated and triacylated lipid moieties differ by a single amide-linked fatty acid chain. Lipoproteins induce host innate immune responses by the mammalian Toll-like receptor 2 (TLR2). In this study, we added a lipid moiety to recombinant OMP26, a native nonlipidated (NL) membrane protein of Haemophilus influenzae, and characterized it extensively under different expression conditions using flow cytometry, LC/MS, and MALDI-TOF. We also investigated the ability of NL and lipidated (L) OMP26 to induce in vitro stimulation of HEK Blue-hTLR2-TR1 and hTLR-TLR6 cells. Our L-OMP26 was predominantly expressed in diacylated form, so we employed an additional gene copy of apolipoprotein N-acetyltransferase enzyme (Lnt)-rich Escherichia coli strain that further acylates the diacyl lipoproteins to enhance the production of triacylated L-OMP26. The diacyl and triacyl versions of L-OMP26, intended as a vaccine for use in humans, were characterized and evaluated as protein vaccine components in a mouse model. We found that the diacyl and triacyl L-OMP26 protein formulations differed markedly in their immune-stimulatory activity, with diacylated L-OMP26 stimulating higher adaptive immune responses compared with triacylated L-OMP26 and both stimulating higher adaptive immune response compared to NL-OMP26. We also constructed and characterized an L-OMP26φNL-P6 fusion protein, where NL-P6 protein (a commonly studied H. influenzae vaccine candidate) was recombinantly fused to L-OMP26. We observed a similar pattern of lipidation (predominantly diacylated) in the L-OMP26φNL-P6 fusion protein.
Collapse
Affiliation(s)
- Ravinder Kaur
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA.
| | - Jill Mangiafesto
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Karin Pryharski
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Sailee Rasam
- Department of Biochemistry, State University of New York at Buffalo, New York, USA
| | - Robert Zagursky
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA
| | - Michael Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, Rochester, New York, USA.
| |
Collapse
|
5
|
Lipidation of Haemophilus influenzae Antigens P6 and OMP26 Improves Immunogenicity and Protection against Nasopharyngeal Colonization and Ear Infection. Infect Immun 2022; 90:e0067821. [PMID: 35435727 DOI: 10.1128/iai.00678-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) causes respiratory infections that lead to high morbidity and mortality worldwide, encouraging development of effective vaccines. To achieve a protective impact on nasopharyngeal (NP) colonization by NTHi, enhanced immunogenicity beyond that achievable with recombinant-protein antigens is likely to be necessary. Adding a lipid moiety to a recombinant protein would enhance immunogenicity through Toll-like receptor 2 signaling of antigen-presenting cells and Th17 cell response in the nasal-associated lymphoid tissue (NALT). We investigated effects of lipidation (L) of recombinant proteins P6 and OMP26 compared to nonlipidated (NL) P6 and OMP26 and as fusion constructs (L-OMP26ϕNL-P6 and L-P6ϕNL-OMP26) in a mouse model. After intraperitoneal or intranasal vaccination, antibody responses were compared and protection from NP colonization and middle ear infection were assessed. L-P6 and L-OMP26 induced approximately 10- to 100-fold-higher IgG antibody levels than NL-P6 and NL-OMP26. Fusion constructs significantly increased IgG antibody to both target proteins, even though only one of the proteins was lipidated. NP colonization and middle ear bullae NTHi density was 1 to 4 logs lower following vaccination with L-P6 and L-OMP26 than with NL-P6 and NL-OMP26. Fusion constructs also resulted in a 1- to 3-log-lower NTHi density following vaccination. NALT cells from mice vaccinated with lipidated protein constructs had higher levels of interleukin-17 (IL-17), IL-22, and CD4+ T-cell memory. Passive transfer of sera from L-OMP26ϕNL-P6-vaccinated mice to recipient infant mice reduced NP colonization and ear bulla NTHi density. We conclude that L-P6, L-OMP26, and fusion constructs generate enhanced antibody responses and protection from NP colonization and middle ear infection by NTHi in mice.
Collapse
|
6
|
Jahn K, Kohler TP, Swiatek LS, Wiebe S, Hammerschmidt S. Platelets, Bacterial Adhesins and the Pneumococcus. Cells 2022; 11:cells11071121. [PMID: 35406684 PMCID: PMC8997422 DOI: 10.3390/cells11071121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/25/2023] Open
Abstract
Systemic infections with pathogenic or facultative pathogenic bacteria are associated with activation and aggregation of platelets leading to thrombocytopenia and activation of the clotting system. Bacterial proteins leading to platelet activation and aggregation have been identified, and while platelet receptors are recognized, induced signal transduction cascades are still often unknown. In addition to proteinaceous adhesins, pathogenic bacteria such as Staphylococcus aureus and Streptococcus pneumoniae also produce toxins such as pneumolysin and alpha-hemolysin. They bind to cellular receptors or form pores, which can result in disturbance of physiological functions of platelets. Here, we discuss the bacteria-platelet interplay in the context of adhesin–receptor interactions and platelet-activating bacterial proteins, with a main emphasis on S. aureus and S. pneumoniae. More importantly, we summarize recent findings of how S. aureus toxins and the pore-forming toxin pneumolysin of S. pneumoniae interfere with platelet function. Finally, the relevance of platelet dysfunction due to killing by toxins and potential treatment interventions protecting platelets against cell death are summarized.
Collapse
|
7
|
Wahyuningtyas R, Lai YS, Wu ML, Chen HW, Chung WB, Chaung HC, Chang KT. Recombinant Antigen of Type 2 Porcine Reproductive and Respiratory Syndrome Virus (PRRSV-2) Promotes M1 Repolarization of Porcine Alveolar Macrophages and Th1 Type Response. Vaccines (Basel) 2021; 9:vaccines9091009. [PMID: 34579246 PMCID: PMC8473084 DOI: 10.3390/vaccines9091009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
The polarization status of porcine alveolar macrophages (PAMs) determines the infectivity of porcine reproductive and respiratory syndrome virus (PRRSV). PRRSV infection skews macrophage polarization toward an M2 phenotype, followed by T-cells inactivation. CD163, one of the scavenger receptors of M2 macrophages, has been described as a putative receptor for PRRSV. In this study, we examined two types of PRRSV-2-derived recombinant antigens, A1 (g6Ld10T) and A2 (lipo-M5Nt), for their ability to mediate PAM polarization and T helper (Th1) response. A1 and A2 were composed of different combination of ORF5, ORF6, and ORF7 in full or partial length. To enhance the adaptive immunity, they were conjugated with T cells epitopes or lipidated elements, respectively. Our results showed that CD163+ expression on PAMs significantly decreased after being challenged with A1 but not A2, followed by a significant increase in pro-inflammatory genes (TNF-α, IL-6, and IL-12). In addition, next generation sequencing (NGS) data show an increase in T-cell receptor signaling in PAMs challenged with A1. Using a co-culture system, PAMs challenged with A1 can induce Th1 activation by boosting IFN-γ and IL-12 secretion and TNF-α expression. In terms of innate and T-cell-mediated immunity, we conclude that A1 is regarded as a potential vaccine for immunization against PRRSV infection due to its ability to reverse the polarization status of PAMs toward pro-inflammatory phenotypes, which in turn reduces CD163 expression for viral entry and increases immunomodulation for Th1-type response.
Collapse
Affiliation(s)
- Rika Wahyuningtyas
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Yin-Siew Lai
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
| | - Mei-Li Wu
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Food Science, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
| | - Hsin-Wei Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 350, Taiwan;
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 400, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 800, Taiwan
| | - Wen-Bin Chung
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
| | - Hso-Chi Chaung
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan;
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| | - Ko-Tung Chang
- Research Centre for Animal Biologics, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan; (R.W.); (Y.-S.L.); (M.-L.W.)
- Flow Cytometry Center, Precision Instruments Center, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Neipu, Pingtung 912, Taiwan
- Correspondence: (H.-C.C.); (K.-T.C.)
| |
Collapse
|
8
|
Ojha R, Prajapati VK. Cognizance of posttranslational modifications in vaccines: A way to enhanced immunogenicity. J Cell Physiol 2021; 236:8020-8034. [PMID: 34170014 PMCID: PMC8427110 DOI: 10.1002/jcp.30483] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/21/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
Vaccination is a significant advancement or preventative strategy for controlling the spread of various severe infectious and noninfectious diseases. The purpose of vaccination is to stimulate or activate the immune system by injecting antigens, i.e., either whole microorganisms or using the pathogen's antigenic part or macromolecules. Over time, researchers have made tremendous efforts to reduce vaccine side effects or failure by developing different strategies combining with immunoinformatic and molecular biology. These newly designed vaccines are composed of single or several antigenic molecules derived from a pathogenic organism. Although, whole‐cell vaccines are still in use against various diseases but due to their ineffectiveness, other vaccines like DNA‐based, RNA‐based, and protein‐based vaccines, with the addition of immunostimulatory agents, are in the limelight. Despite this, many researchers escape the most common fundamental phenomenon of protein posttranslational modifications during the development of vaccines, which regulates protein functional behavior, evokes immunogenicity and stability, etc. The negligence about post translational modification (PTM) during vaccine development may affect the vaccine's efficacy and immune responses. Therefore, it becomes imperative to consider these modifications of macromolecules before finalizing the antigenic vaccine construct. Here, we have discussed different types of posttranslational/transcriptional modifications that are usually considered during vaccine construct designing: Glycosylation, Acetylation, Sulfation, Methylation, Amidation, SUMOylation, Ubiquitylation, Lipidation, Formylation, and Phosphorylation. Based on the available research information, we firmly believe that considering these modifications will generate a potential and highly immunogenic antigenic molecule against communicable and noncommunicable diseases compared to the unmodified macromolecules.
Collapse
Affiliation(s)
- Rupal Ojha
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
9
|
Lagousi T, Basdeki P, De Jonge MI, Spoulou V. Understanding host immune responses to pneumococcal proteins in the upper respiratory tract to develop serotype-independent pneumococcal vaccines. Expert Rev Vaccines 2020; 19:959-972. [PMID: 33107359 DOI: 10.1080/14760584.2020.1843433] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction: Nasopharyngeal colonization is a precondition for mucosal and invasive pneumococcal disease. Prevention of colonization may reduce pneumococcal transmission and disease incidence. Therefore, several protein-based pneumococcal vaccines are currently under investigation. Areas covered: We aimed to better understand the host immune responses to pneumococcal proteins in the upper respiratory tract (URT) that could facilitate the development of serotype-independent pneumococcal vaccines. English peer-reviewed papers reporting immunological mechanisms involved in host immune response to pneumococcal proteins in the URT were retrieved through a PubMed search using the terms 'pneumococcal proteins,' 'nasopharyngeal colonization' and/or 'cellular/humoral host immune response.' Expert opinion: Although pneumococcal protein antigens induce humoral immune responses, as well as IL-17A-mediated immunity, none of them, when used as single antigen, is sufficient to control and broadly protect against pneumococcal colonization. Novel vaccines should contain multiple conserved protein antigens to activate both arms of the immune system and evoke protection against the whole spectrum of pneumococcal variants by reducing, rather than eradicating, pneumococcal carriage. The highest efficacy would likely be achieved when the vaccine is intranasally applied, inducing mucosal immunity and enhancing the first line of defense by restricting pneumococcal density in the URT, which in turn will lead to reduced transmission and protection against disease.
Collapse
Affiliation(s)
- Theano Lagousi
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Paraskevi Basdeki
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| | - Marien I De Jonge
- Section Pediatric Infectious Diseases, Laboratory of Medical Immunology, Radboud Center for Infectious Diseases, Radboud Institute for Molecular Life Sciences , Nijmegen, The Netherlands
| | - Vana Spoulou
- First Department of Paediatrics, "Aghia Sophia" Children's Hospital, Immunobiology Research Laboratory and Infectious Diseases Department "MAKKA", Athens Medical School , Athens, Greece
| |
Collapse
|