1
|
Harrell JE, Roy CJ, Gunn JS, McLachlan JB. Current vaccine strategies and novel approaches to combatting Francisella infection. Vaccine 2024; 42:2171-2180. [PMID: 38461051 DOI: 10.1016/j.vaccine.2024.02.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/23/2024] [Accepted: 02/27/2024] [Indexed: 03/11/2024]
Abstract
Tularemia is caused by subspecies of Francisella tularensis and can manifest in a variety of disease states, with the pneumonic presentation resulting in the greatest mortality. Despite decades of research, there are no approved vaccines against F. tularensis in the United States. Traditional vaccination strategies, such as live-attenuated or subunit vaccines, are not favorable due to inadequate protection or safety concerns. Because of this, novel vaccination strategies are needed to combat tularemia. Here we discuss the current state of and challenges to the tularemia vaccine field and suggest novel vaccine approaches going forward that might be better suited for protecting against F. tularensis infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Chad J Roy
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA, Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA, Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio, USA
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA.
| |
Collapse
|
2
|
Alexovič M, Lindner JR, Bober P, Longuespée R, Sabo J, Davalieva K. Human peripheral blood mononuclear cells: A review of recent proteomic applications. Proteomics 2022; 22:e2200026. [PMID: 35348286 DOI: 10.1002/pmic.202200026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 11/07/2022]
Abstract
Human peripheral blood mononuclear cells (PBMCs) represent a sentinel blood sample which reacts to different pathophysiological stimuli in the form of immunological responses/immunophenotypic changes. The study of molecular content of PBMCs can provide better understanding of immune processes giving the possibility of monitoring the health conditions of the host organism. Proteomic analysis of PBMCs can achieve mentioned goal as important immune-related biomarkers are easily accessible for analysis. PBMCs have been gaining attention in different research areas including preclinical or clinical investigations. In this review, recent applications of proteomic analysis of PBMCs are described and discussed. Approaches are divided based on different proteomic workflows such as in-gel, in-solution and on-filter modes. The effect of various diseases such as autoimmune, cancer, neurodegenerative, viral, metabolic, and various immune stimulations such as radiation, vaccine, corticosteroids over PBMCs proteome, are described with emphasis on promising protein biomarker candidates. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Michal Alexovič
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Joshua Raoul Lindner
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bober
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Rémi Longuespée
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ján Sabo
- Department of Medical and Clinical Biophysics, Faculty of Medicine, University of P.J. Šafárik in Košice, Košice, Slovakia
| | - Katarina Davalieva
- Research Centre for Genetic Engineering and Biotechnology, "Georgi D Efremov", Macedonian Academy of Sciences and Arts, USA
| |
Collapse
|
3
|
Novel Transcriptional and Translational Biomarkers of Tularemia Vaccine Efficacy in a Mouse Inhalation Model: Proof of Concept. Microorganisms 2021; 10:microorganisms10010036. [PMID: 35056485 PMCID: PMC8778127 DOI: 10.3390/microorganisms10010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis subspecies tularensis (Ftt) is extremely virulent for humans when inhaled as a small particle aerosol (<5 µm). Inhalation of ≥20 viable bacteria is sufficient to initiate infection with a mortality rate ≥30%. Consequently, in the past, Ftt became a primary candidate for biological weapons development. To counter this threat, the USA developed a live vaccine strain (LVS), that showed efficacy in humans against inhalation of virulent Ftt. However, the breakthrough dose was fairly low, and protection waned with time. These weaknesses triggered extensive research for better vaccine candidates. Previously, we showed that deleting the clpB gene from virulent Ftt strain, SCHU S4, resulted in a mutant that was significantly less virulent than LVS for mice, yet better protected them from aerosol challenge with wild-type SCHU S4. To date, comprehensive searches for correlates of protection for SCHU S4 ΔclpB among molecules that are critical signatures of cell-mediated immunity, have yielded little reward. In this study we used transcriptomics analysis to expand the potential range of molecular correlates of protection induced by vaccination with SCHU S4 ΔclpB beyond the usual candidates. The results provide proof-of-concept that unusual host responses to vaccination can potentially serve as novel efficacy biomarkers for new tularemia vaccines.
Collapse
|
4
|
Maner-Smith KM, Goll JB, Khadka M, Jensen TL, Colucci JK, Gelber CE, Albert CJ, Bosinger SE, Franke JD, Natrajan M, Rouphael N, Johnson RA, Sanz P, Anderson EJ, Hoft DF, Mulligan MJ, Ford DA, Ortlund EA. Alterations in the Human Plasma Lipidome in Response to Tularemia Vaccination. Vaccines (Basel) 2020; 8:E414. [PMID: 32722213 PMCID: PMC7564507 DOI: 10.3390/vaccines8030414] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/14/2020] [Accepted: 04/24/2020] [Indexed: 12/11/2022] Open
Abstract
Tularemia is a highly infectious and contagious disease caused by the bacterium Francisella tularensis. To better understand human response to a live-attenuated tularemia vaccine and the biological pathways altered post-vaccination, healthy adults were vaccinated, and plasma was collected pre- and post-vaccination for longitudinal lipidomics studies. Using tandem mass spectrometry, we fully characterized individual lipid species within predominant lipid classes to identify changes in the plasma lipidome during the vaccine response. Separately, we targeted oxylipins, a subset of lipid mediators involved in inflammatory pathways. We identified 14 differentially abundant lipid species from eight lipid classes. These included 5-hydroxyeicosatetraenoic acid (5-HETE) which is indicative of lipoxygenase activity and, subsequently, inflammation. Results suggest that 5-HETE was metabolized to a dihydroxyeicosatrienoic acid (DHET) by day 7 post-vaccination, shedding light on the kinetics of the 5-HETE-mediated inflammatory response. In addition to 5-HETE and DHET, we observed pronounced changes in 34:1 phosphatidylinositol, anandamide, oleamide, ceramides, 16:1 cholesteryl ester, and other glycerophospholipids; several of these changes in abundance were correlated with serum cytokines and T cell activation. These data provide new insights into alterations in plasma lipidome post-tularemia vaccination, potentially identifying key mediators and pathways involved in vaccine response and efficacy.
Collapse
Affiliation(s)
- Kristal M. Maner-Smith
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA; (K.M.M.-S.); (M.K.); (J.K.C.)
| | - Johannes B. Goll
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (C.E.G.)
| | - Manoj Khadka
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA; (K.M.M.-S.); (M.K.); (J.K.C.)
| | - Travis L. Jensen
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (C.E.G.)
| | - Jennifer K. Colucci
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA; (K.M.M.-S.); (M.K.); (J.K.C.)
| | - Casey E. Gelber
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (C.E.G.)
| | - Carolyn J. Albert
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; (C.J.A.); (J.D.F.)
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory University, Atlanta, GA 30322, USA;
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (M.N.); (N.R.); (E.J.A.); (M.J.M.)
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Jacob D. Franke
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; (C.J.A.); (J.D.F.)
| | - Muktha Natrajan
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (M.N.); (N.R.); (E.J.A.); (M.J.M.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Nadine Rouphael
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (M.N.); (N.R.); (E.J.A.); (M.J.M.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert A. Johnson
- Biomedical Advanced Research and Development Authority, US Department of Health and Human Services, Washington, DC 20201, USA;
| | - Patrick Sanz
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA;
| | - Evan J. Anderson
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (M.N.); (N.R.); (E.J.A.); (M.J.M.)
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Daniel F. Hoft
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA;
| | - Mark J. Mulligan
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (M.N.); (N.R.); (E.J.A.); (M.J.M.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Division of Infectious Diseases and Immunology, Department of Medicine, and New York University (NYU) Langone Vaccine Center, NYU School of Medicine, New York, NY 10016, USA
| | - David A. Ford
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO 63104, USA; (C.J.A.); (J.D.F.)
| | - Eric A. Ortlund
- Department of Biochemistry, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA; (K.M.M.-S.); (M.K.); (J.K.C.)
| |
Collapse
|
5
|
Goll JB, Li S, Edwards JL, Bosinger SE, Jensen TL, Wang Y, Hooper WF, Gelber CE, Sanders KL, Anderson EJ, Rouphael N, Natrajan MS, Johnson RA, Sanz P, Hoft D, Mulligan MJ. Transcriptomic and Metabolic Responses to a Live-Attenuated Francisella tularensis Vaccine. Vaccines (Basel) 2020; 8:vaccines8030412. [PMID: 32722194 PMCID: PMC7563297 DOI: 10.3390/vaccines8030412] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/29/2020] [Accepted: 06/14/2020] [Indexed: 12/15/2022] Open
Abstract
The immune response to live-attenuated Francisella tularensis vaccine and its host evasion mechanisms are incompletely understood. Using RNA-Seq and LC–MS on samples collected pre-vaccination and at days 1, 2, 7, and 14 post-vaccination, we identified differentially expressed genes in PBMCs, metabolites in serum, enriched pathways, and metabolites that correlated with T cell and B cell responses, or gene expression modules. While an early activation of interferon α/β signaling was observed, several innate immune signaling pathways including TLR, TNF, NF-κB, and NOD-like receptor signaling and key inflammatory cytokines such as Il-1α, Il-1β, and TNF typically activated following infection were suppressed. The NF-κB pathway was the most impacted and the likely route of attack. Plasma cells, immunoglobulin, and B cell signatures were evident by day 7. MHC I antigen presentation was more actively up-regulated first followed by MHC II which coincided with the emergence of humoral immune signatures. Metabolomics analysis showed that glycolysis and TCA cycle-related metabolites were perturbed including a decline in pyruvate. Correlation networks that provide hypotheses on the interplay between changes in innate immune, T cell, and B cell gene expression signatures and metabolites are provided. Results demonstrate the utility of transcriptomics and metabolomics for better understanding molecular mechanisms of vaccine response and potential host–pathogen interactions.
Collapse
Affiliation(s)
- Johannes B. Goll
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Shuzhao Li
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.L.); (Y.W.)
| | - James L. Edwards
- Department of Chemistry, Saint Louis University, St Louis, MO 63103, USA; (J.L.E.); (K.L.S.)
| | - Steven E. Bosinger
- Yerkes National Primate Research Center, Secret Path, Atlanta, GA 30329, USA;
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (N.R.); (M.S.N.)
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Decatur, GA 30030, USA
| | - Travis L. Jensen
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Yating Wang
- Departments of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA; (S.L.); (Y.W.)
| | - William F. Hooper
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Casey E. Gelber
- The Emmes Company, Rockville, MD 20850, USA; (J.B.G.); (T.L.J.); (W.F.H.); (C.E.G.)
| | - Katherine L. Sanders
- Department of Chemistry, Saint Louis University, St Louis, MO 63103, USA; (J.L.E.); (K.L.S.)
| | - Evan J. Anderson
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, 30322, USA
| | - Nadine Rouphael
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (N.R.); (M.S.N.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Muktha S. Natrajan
- Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA; (N.R.); (M.S.N.)
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Robert A. Johnson
- Biomedical Advanced Research and Development Authority, U. S. Department of Health and Human Services, Washington, DC 20201, USA;
| | - Patrick Sanz
- Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20892, USA;
| | - Daniel Hoft
- Division of Infectious Diseases, Allergy and Immunology, Saint Louis University Health Sciences Center, St. Louis, MO 63104, USA;
| | - Mark J. Mulligan
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
- Department of Pediatrics, Emory University School of Medicine and Children’s Healthcare of Atlanta, Atlanta, GA, 30322, USA
- Division of Infectious Diseases and Immunology, Department of Medicine, and New York University (NYU) Langone Vaccine Center, NYU School of Medicine, New York, NY 10016, USA
- Correspondence: ; Tel.: +1-212-263-9410; Fax: +1-646-501-4645
| |
Collapse
|