1
|
Hashemi P, Osanloo M, Farjadfar A, Nasiri-Ghiri M, Zarenezhad E, Mahmoodi S. A multi-epitope protein vaccine encapsulated in alginate nanoparticles as a candidate vaccine against Shigella sonnei. Sci Rep 2024; 14:22484. [PMID: 39341926 PMCID: PMC11438873 DOI: 10.1038/s41598-024-73105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 09/13/2024] [Indexed: 10/01/2024] Open
Abstract
Shigellosis, caused by the Gram-negative bacterium Shigella, is a major global health challenge. Despite extensive research over the past two decades, no commercial vaccine is available to prevent Shigella infection. Developing multi-epitope vaccines offers a promising and innovative approach to tackling infectious diseases. In this study, we produced a multi-epitope vaccine candidate using E. coli BL21 (DE3) plysS bacteria and purified the vaccine protein with Ni-NTA affinity chromatography. We then prepared alginate nanoparticles containing the vaccine protein, with a particle size of 122 ± 6 nm, PDI 0.17, SPAN 0.83, and zeta potential of -27 ± 2 mV. Successful protein loading was confirmed through nanodrop and ATR-FTIR analyses. To evaluate the immunogenicity of the encapsulated vaccine, mice were orally vaccinated, and their serum was analyzed for IgG, IL-4, and IFN-γ levels cytokines. The results showed a significant increase in IgG level in the vaccinated group compared to controls. Additionally, the vaccinated group exhibited a notable increase in IL-4 and IFN-γ cytokines, indicating a robust Th-cell-mediated immune response essential for combating Shigella. Our nano-vaccine demonstrated high efficacy in activating both humoral and cellular immunity, effectively protecting against the bacteria. The alginate-based oral vaccine candidate thus emerges as a promising strategy for developing a multi-epitope vaccine candidate against Shigella.
Collapse
Affiliation(s)
- Parisa Hashemi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Akbar Farjadfar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahdi Nasiri-Ghiri
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Elham Zarenezhad
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Shirin Mahmoodi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
2
|
Da Costa RM, Rooke JL, Wells TJ, Cunningham AF, Henderson IR. Type 5 secretion system antigens as vaccines against Gram-negative bacterial infections. NPJ Vaccines 2024; 9:159. [PMID: 39218947 PMCID: PMC11366766 DOI: 10.1038/s41541-024-00953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
Infections caused by Gram-negative bacteria are leading causes of mortality worldwide. Due to the rise in antibiotic resistant strains, there is a desperate need for alternative strategies to control infections caused by these organisms. One such approach is the prevention of infection through vaccination. While live attenuated and heat-killed bacterial vaccines are effective, they can lead to adverse reactions. Newer vaccine technologies focus on utilizing polysaccharide or protein subunits for safer and more targeted vaccination approaches. One promising avenue in this regard is the use of proteins released by the Type 5 secretion system (T5SS). This system is the most prevalent secretion system in Gram-negative bacteria. These proteins are compelling vaccine candidates due to their demonstrated protective role in current licensed vaccines. Notably, Pertactin, FHA, and NadA are integral components of licensed vaccines designed to prevent infections caused by Bordetella pertussis or Neisseria meningitidis. In this review, we delve into the significance of incorporating T5SS proteins into licensed vaccines, their contributions to virulence, conserved structural motifs, and the protective immune responses elicited by these proteins.
Collapse
Affiliation(s)
- Rochelle M Da Costa
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Jessica L Rooke
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Timothy J Wells
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Adam F Cunningham
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Ian R Henderson
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
3
|
Veisi R, Nazarian S, Fathi J, Hadi N. Expression and purification of TolC as a recombinant protein vaccine against Shigella flexneri and evaluation of immunogenic response in mice. Microb Pathog 2024; 188:106539. [PMID: 38211835 DOI: 10.1016/j.micpath.2024.106539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/30/2023] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND Shigella is one of the major causes of dysenteric diarrhea, which is known shigelosis. Shigelosis causes 160,000 deaths annually of diarrheal disease in the global scale especially children less than 5 years old. No licensed vaccine is available against shigelosis, therefore, efforts for develop an effective and safe vaccine against Shigella as before needed. The reverse vaccinology (RV) is a novel strategy that evaluate genome or proteome of the organism to find a new promising vaccine candidate. In this study, immunogenicity of a designed-recombinant antigen is evaluated through the in silico studies and animal experiments to predict a new immunogenic candidate against Shigella. METHODS In the first step, proteome of Shigella flexneri was obtained from UniProtKB and then the outer membrane and extracellular proteins were predicted. In this study TolC as an outer membrane protein was selected and confirmed among candidates. In next steps, pre-selected protein was evaluated for transmembrane domains, homology, conservation, antigenicity, solubility, and B- and T-cell prediction by different online servers. RESULT TolC as a conserved outer membrane protein, using different immune-informatics tools had acceptable scores and was selected as the immunogenic antigen for animal experiment studies. Recombinant TolC protein after expression and purification, was administered to BALB/c mice over three intraperitoneal routes. The sera of mice was used to evaluate the IgG1 production assay by indirect-ELISA. The immunized mice depicted effective protection against 2LD50 of Shigella. Flexneri ATCC12022 (challenge study). CONCLUSION Therefore, the reverse vaccinology approach and experimental test results demonstrated that TolC as a novel effective and immunogenic antigen is capable for protection against shigellosis.
Collapse
Affiliation(s)
- Razieh Veisi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Javad Fathi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
4
|
León Y, Honigsberg R, Rasko DA, Faherty CS. Gastrointestinal signals in supplemented media reveal a role in adherence for the Shigella flexneri sap autotransporter gene. Gut Microbes 2024; 16:2331985. [PMID: 38549437 PMCID: PMC10984119 DOI: 10.1080/19490976.2024.2331985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/14/2024] [Indexed: 04/02/2024] Open
Abstract
Shigella flexneri causes severe diarrheal disease worldwide. While many aspects of pathogenesis have been elucidated, significant knowledge gaps remain regarding the role of putative chromosomally-encoded virulence genes. The uncharacterized sap gene encoded on the chromosome has significant nucleotide sequence identity to the fluffy (flu) antigen 43 autotransporter gene in pathogenic Escherichia coli. Here, we constructed a Δsap mutant in S. flexneri strain 2457T and examined the effects of this mutation on bacterial cell aggregation, biofilm formation, and adherence to colonic epithelial cells. Analyses included the use of growth media supplemented with glucose and bile salts to replicate small intestinal signals encountered by S. flexneri. Deletion of the sap gene in 2457T affected epithelial cell adherence, resulted in quicker bacterial cell aggregation, but did not affect biofilm formation. This work highlights a functional role for the sap gene in S. flexneri pathogenesis and further demonstrates the importance of using relevant and appropriate gastrointestinal signals to characterize virulence genes of enteropathogenic bacteria.
Collapse
Affiliation(s)
- Yrvin León
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Raphael Honigsberg
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, USA
- École Normale Supérieure Paris-Saclay, Département d’Enseignement et de, Recherche de Biologie, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David A. Rasko
- Institute for Genome Sciences, Center for Pathogen Research, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Ma S, Zhu F, Xu Y, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel multi-epitope mRNA vaccine candidate to combat HMPV virus. Hum Vaccin Immunother 2023; 19:2293300. [PMID: 38172569 PMCID: PMC10824151 DOI: 10.1080/21645515.2023.2293300] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Human metapneumovirus (HMPV) is one of the main pathogens causing severe respiratory infections in children, as a common cause of immunodeficiency-related deaths in children and elderly individuals, the prevalence of HMPV has been showing an increasing trend during the last years. However, no vaccines or effective treatment plans are available currently. In this present, based on candidate proteins highly associated with viral virulence and has promising protective potential, we screened for immunodominant cytotoxic T cells, helper T cells, and Linear B-cell epitopes from the most promising candidate Fusion protein, together with G, SH, M, and M2. All epitopes were predicted to have strong antigenicity by Vaxijen and pose no potential toxicity, allergenicity, or hormonology to human proteins by Toxinpred, Allerpred, and Blast analysis, meanwhile, high conservancy is demanded to cover different subtypes. adjuvants β-defensin II and Pam2Cys was attached with EAAAK linkers to improve vaccine's efficiency. Then, calculation of physicochemical properties proved the protein vaccine as a product can stably exist in the human body. Besides, we assessed the docking between the vaccine and immune receptors to evaluate its ability to stimulate immune responses, and the dynamic simulation further confirmed that the vaccine can tightly bind with immune receptors, which approved that the construction has the potential to induce strong humoral and cellular immune response. Finally, the vaccine was constructed into a multi-epitope mRNA vaccine, the immune simulations suggest that this is a vaccine candidate for controlling HMPV infection.
Collapse
Affiliation(s)
- Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yizhong Xu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, China
| |
Collapse
|
6
|
Pastor Y, Calvo A, Salvador-Erro J, Gamazo C. Refining Immunogenicity through Intradermal Delivery of Outer Membrane Vesicles against Shigella flexneri in Mice. Int J Mol Sci 2023; 24:16910. [PMID: 38069232 PMCID: PMC10706920 DOI: 10.3390/ijms242316910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Shigellosis remains a global health concern, especially in low- and middle-income countries. Despite improvements in sanitation, the absence of a licensed vaccine for human use has prompted global health organizations to support the development of a safe and effective multivalent vaccine that is cost-effective and accessible for limited-resource regions. Outer Membrane Vesicles (OMVs) have emerged in recent years as an alternative to live attenuated or whole-inactivated vaccines due to their immunogenicity and self-adjuvating properties. Previous works have demonstrated the safety and protective capacity of OMVs against Shigella flexneri infection in mouse models when administered through mucosal or intradermal routes. However, some immunological properties, such as the cellular response or cross-protection among different Shigella strains, remained unexplored. In this study, we demonstrate that intradermal immunization of OMVs with needle-free devices recruits a high number of immune cells in the dermis, leading to a robust cellular response marked by antigen-specific cytokine release and activation of effector CD4 T cells. Additionally, functional antibodies are generated, neutralizing various Shigella serotypes, suggesting cross-protective capacity. These findings highlight the potential of OMVs as a promising vaccine platform against shigellosis and support intradermal administration as a simple and painless vaccination strategy to address this health challenge.
Collapse
Affiliation(s)
| | | | | | - Carlos Gamazo
- Department of Microbiology and Parasitology, Navarra Medical Research Institute (IdiSNA), University of Navarra, 31008 Pamplona, Spain; (Y.P.); (A.C.); (J.S.-E.)
| |
Collapse
|
7
|
Chehelgerdi M, Chehelgerdi M. The use of RNA-based treatments in the field of cancer immunotherapy. Mol Cancer 2023; 22:106. [PMID: 37420174 PMCID: PMC10401791 DOI: 10.1186/s12943-023-01807-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/13/2023] [Indexed: 07/09/2023] Open
Abstract
Over the past several decades, mRNA vaccines have evolved from a theoretical concept to a clinical reality. These vaccines offer several advantages over traditional vaccine techniques, including their high potency, rapid development, low-cost manufacturing, and safe administration. However, until recently, concerns over the instability and inefficient distribution of mRNA in vivo have limited their utility. Fortunately, recent technological advancements have mostly resolved these concerns, resulting in the development of numerous mRNA vaccination platforms for infectious diseases and various types of cancer. These platforms have shown promising outcomes in both animal models and humans. This study highlights the potential of mRNA vaccines as a promising alternative approach to conventional vaccine techniques and cancer treatment. This review article aims to provide a thorough and detailed examination of mRNA vaccines, including their mechanisms of action and potential applications in cancer immunotherapy. Additionally, the article will analyze the current state of mRNA vaccine technology and highlight future directions for the development and implementation of this promising vaccine platform as a mainstream therapeutic option. The review will also discuss potential challenges and limitations of mRNA vaccines, such as their stability and in vivo distribution, and suggest ways to overcome these issues. By providing a comprehensive overview and critical analysis of mRNA vaccines, this review aims to contribute to the advancement of this innovative approach to cancer treatment.
Collapse
Affiliation(s)
- Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
8
|
Fathi J, Amani J, Nazarian S, Hadi N, Mirhosseini SA, Ranjbar R, Abianeh HS. Investigate the immunogenic and protective effect of trivalent chimeric protein containing IpaD-StxB-TolC antigens as a vaccine candidate against S. dysenteri and S. flexneri. Microb Pathog 2023; 178:106066. [PMID: 36924900 DOI: 10.1016/j.micpath.2023.106066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023]
Abstract
BACKGROUND s: Shigella spp. causes bloody diarrhea and leads to death, especially in children. Chimeric proteins containing virulence factors can prevent Shigella infection. The purpose of this study is to investigate the immunogenic and protective effect of trivalent chimeric protein containing IpaD-StxB-TolC antigens against shiga toxin, S. dysenteri and S. flexneri in vitro and in vivo conditions. METHODS Recombinant vector was transferred to E. coli BL21. The expression of the chimeric protein was confirmed by SDS PAGE and purified using the Ni-NTA column. Mice were immunized with recombinant protein and antibody titer was evaluated by ELISA. 10, 25 and 50 LD50 of Shiga toxin neutralization was evaluated in vitro (Vero cell line) and in vivo conditions. Also, the challenge of immunized mice with 10, 25 and 50 LD50 of S. dysentery and S. flexneri was done. RESULTS The expression and purification of the recombinant protein with 60.6 kDa was done. ELISA showed increased antibody titer against the chimeric protein. MTT assay indicated that 1/8000 dilution of the sera had a 51% of cell viability against the toxin in Vero cell line. The challenge of mice immunized with toxin showed that the mice had complete protection against 10 and 25 LD50 of toxin and had 40% survival against 50 LD50. Mice receiving 10 and 25 LD50 of S. dysenteri and S. flexneri had 100% protection and in 50 LD50 the survival rate was 60 and 50%, respectively. Organ burden showed that the amount of bacterial colonization in immunized mice was 1 × 104 CFU/mL, which was significantly different from the control group. CONCLUSION This study showed that chimeric proteins can create favorable immunogenicity in the host as vaccine candidates.
Collapse
Affiliation(s)
- Javad Fathi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Nahal Hadi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hossein Samiei Abianeh
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Ardestani H, Nazarian S, Hajizadeh A, Sadeghi D, Kordbacheh E. In silico and in vivo approaches to recombinant multi-epitope immunogen of GroEL provides efficient cross protection against S. Typhimurium, S. flexneri, and S. dysenteriae. Mol Immunol 2022; 144:96-105. [PMID: 35217247 DOI: 10.1016/j.molimm.2022.02.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/08/2022] [Accepted: 02/15/2022] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Stress or Heat Shock Proteins (HSPs) have been included in various operations like protein folding, autophagy, and apoptosis. HSP families recognize as protective antigens in a wide range of bacteria because they have been conserved through evolution. Due to their homology as well as antigenicity they are competent for applying in cross-protection against bacterial diseases. METHODS In the present study, bioinformatics approaches utilized to design epitope-based construction of Hsp60 (or GroEL) protein. In this regard, potential B-cell and T-cell epitopes except for allergenic sequences were selected by immunoinformatic tools. The structural and functional aspects of the DNA, RNA, and protein levels were assessed by bioinformatics software. Following in silico investigations, recombinant GroEL multi-epitope of Salmonella typhi was expressed, purified, and validated. Mouse groups were immunized with recombinant protein and humoral immune response was measured by enzyme linked immunosorbent assay (ELISA). Animal challenge against Salmonella Typhimurium, Shigella flexneri, and Shigella dysenteriae was evaluated. RESULTS recombinant protein expression and purification with 14.3 kilodaltons (kDa) was confirmed by SDS-PAGE and western blotting. After animal administration, the immunoglobulins evaluated increase after each immunization. Immunized antisera exhibited 80%, 40%, and 40% protection against the lethal dose infection by S. Typhimurium, S. flexneri, and S. dysenteriae respectively. Passive immunization conferred 50%, 30%, and 30% protection in mice against S. Typhimurium, S. flexneri and S. dysentery respectively. In addition, bacterial organ load had exhibited a significant decrease in colony forming unit (CFU) in the liver and spleen of the immunized mice compared to the control. CONCLUSION Our study demonstrates the efficacy of S. Typhi recombinant GroEL multi-epitope to consider as a universal immunogen candidate versus multiple bacterial pathogens.
Collapse
Affiliation(s)
- Hassan Ardestani
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Shahram Nazarian
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran.
| | - Abbas Hajizadeh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Davoud Sadeghi
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| | - Emad Kordbacheh
- Department of Biological Sciences, Faculty of Science, Imam Hossein University, Tehran, Iran
| |
Collapse
|
10
|
Anam K, Endharti AT, Poeranto S, Sujuti H, Hidayati DYN, Prawiro SR. Shigella flexneri vaccine development: Oral administration of peptides derived from the 49.8 kDa pili protein subunit activates the intestinal immune response in mice. Vet World 2022; 15:281-287. [PMID: 35400957 PMCID: PMC8980390 DOI: 10.14202/vetworld.2022.281-287] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim: The morbidity and mortality of Shigella infections remain a global challenge. Epitope-based vaccine development is an emerging strategy to prevent bacterial invasion. This study aimed to identify the ability of the 49.8 kDa pili subunit adhesin protein epitope of Shigella flexneri to induce an intestinal immune response in mice. Materials and Methods: Thirty adult male Balb/c mice were divided into a control group, cholera toxin B subunit (CTB) group, CTB+QSSTGTNSQSDLDS (pep_1) group, CTB+DTTITKAETKTVTKNQVVDTPVTTDAAK (pep_2) group, and CTB+ ATLGATLNRLDFNVNNK (pep_3). We performed immunization by orally administering 50 μg of antigen and 50 μl of adjuvant once a week over 4 weeks. We assessed the cellular immune response by quantifying T helper 2 (Th2) and Th17 using flow cytometry. In addition, we assessed the humoral immune response by quantifying interleukin (IL-4), IL-17, secretory immunoglobulin A (sIgA), and β-defensin using enzyme-linked immunoassay. Statistical analysis was performed using one-way analysis of variance and Kruskal–Wallis test. Results: Peptide oral immunization increases the cellular immune response as reflected by the increase of Th2 (p=0.019) and Th17 (p=0.004) cell counts, particularly in the CTB_pep_1 group. Humoral immune response activation was demonstrated by increased IL-4 levels, especially in the CTB+pep_3 group (p=0.000). The IL-17 level was increased significantly in the CTB+pep_1 group (p=0.042). The mucosal immune response was demonstrated by the sIgA levels increase in the CTB+pep_3 group (p=0.042) and the β-defensin protein levels (p=0.000). Conclusion: All selected peptides activated the cellular and humoral immune responses in the intestine of mice. Further studies are necessary to optimize antigen delivery and evaluate whether the neutralizing properties of these peptides allow them to prevent bacterial infection.
Collapse
Affiliation(s)
- Khoirul Anam
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia; Study Program of Medical Laboratory Technology, Institute of Health and Science Technology Wiyata Husada, Samarinda, Indonesia
| | - Agustina Tri Endharti
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sri Poeranto
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Hidayat Sujuti
- Department of Biochemistry, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Dwi Yuni Nur Hidayati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Sumarno Reto Prawiro
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
11
|
Cuscino N, Fatima A, Di Pilato V, Bulati M, Alfano C, Monaca E, Di Mento G, Di Carlo D, Cardinale F, Monaco F, Rossolini GM, Khan AM, Conaldi PG, Douradinha B. Computational design and characterization of a multiepitope vaccine against carbapenemase-producing Klebsiella pneumoniae strains, derived from antigens identified through reverse vaccinology. Comput Struct Biotechnol J 2022; 20:4446-4463. [PMID: 36051872 PMCID: PMC9418682 DOI: 10.1016/j.csbj.2022.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen of clinical relevance, which can provoke serious urinary and blood infections and pneumonia. This bacterium is a major public health threat due to its resistance to several antibiotic classes. Using a reverse vaccinology approach, 7 potential antigens were identified, of which 4 were present in most of the sequences of Italian carbapenem-resistant K. pneumoniae clinical isolates. Bioinformatics tools demonstrated the antigenic potential of these bacterial proteins and allowed for the identification of T and B cell epitopes. This led to a rational design and in silico characterization of a multiepitope vaccine against carbapenem-resistant K. pneumoniae strains. As adjuvant, the mycobacterial heparin-binding hemagglutinin adhesin (HBHA), which is a Toll-like receptor 4 (TLR-4) agonist, was included, to increase the immunogenicity of the construct. The multiepitope vaccine candidate was analyzed by bioinformatics tools to assess its antigenicity, solubility, allergenicity, toxicity, physical and chemical parameters, and secondary and tertiary structures. Molecular docking binding energies to TLR-2 and TLR-4, two important innate immunity receptors involved in the immune response against K. pneumoniae infections, and molecular dynamics simulations of such complexes supported active interactions. A codon optimized multiepitope sequence cloning strategy is proposed, for production of recombinant vaccine in classical bacterial vectors. Finally, a 3 dose-immunization simulation with the multiepitope construct induced both cellular and humoral immune responses. These results suggest that this multiepitope construct has potential as a vaccination strategy against carbapenem-resistant K. pneumoniae and deserves further validation.
Collapse
|
12
|
Recent Progress in Shigella and Burkholderia pseudomallei Vaccines. Pathogens 2021; 10:pathogens10111353. [PMID: 34832508 PMCID: PMC8621228 DOI: 10.3390/pathogens10111353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 12/28/2022] Open
Abstract
Significant advancement has been made in the development of vaccines against bacterial pathogens. However, several roadblocks have been found during the evaluation of vaccines against intracellular bacterial pathogens. Therefore, new lessons could be learned from different vaccines developed against unrelated intracellular pathogens. Bacillary dysentery and melioidosis are important causes of morbidity and mortality in developing nations, which are caused by the intracellular bacteria Shigella and Burkholderia pseudomallei, respectively. Although the mechanisms of bacterial infection, dissemination, and route of infection do not provide clues about the commonalities of the pathogenic infectious processes of these bacteria, a wide variety of vaccine platforms recently evaluated suggest that in addition to the stimulation of antibodies, identifying protective antigens and inducing T cell responses are some additional required elements to induce effective protection. In this review, we perform a comparative evaluation of recent candidate vaccines used to combat these two infectious agents, emphasizing the common strategies that can help investigators advance effective and protective vaccines to clinical trials.
Collapse
|
13
|
León Y, Faherty CS. Bacteriophages against enteropathogens: rediscovery and refinement of novel antimicrobial therapeutics. Curr Opin Infect Dis 2021; 34:491-499. [PMID: 34524200 PMCID: PMC8447223 DOI: 10.1097/qco.0000000000000772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW Alarming rates of antibiotic resistance in bacteria and gastrointestinal dysbiosis associated with traditional antimicrobial therapy have led to renewed interests in developing bacteriophages as novel therapeutics. In this review, we highlight some of the recent advances in bacteriophage therapeutic development targeting important enteropathogens of the gastrointestinal tract. RECENT FINDINGS Bacteriophages are viruses that infect bacteria, either to utilize the bacterial machinery to produce new progeny or stably integrate into the bacterial chromosome to ensure maintenance of the viral genome. With recent advances in synthetic biology and the discovery of CRISPR-Cas systems used by bacteria to protect against bacteriophages, novel molecular applications are taking us beyond the discovery of bacteriophages and toward innovative applications, including the targeting of bacterial virulence factors, the use of temperate bacteriophages, and the production of bacteriophage proteins as antimicrobial agents. These technologies offer promise to target enteropathogens without disrupting the healthy microbiota of the gastrointestinal tract. Moreover, the use of nanoparticle technology and other modifications are helping researchers circumvent the harsh gastrointestinal conditions that could limit the efficacy of bacteriophages against enteric pathogens. SUMMARY This era of discovery and development offers significant potential to modify bacteriophages and overcome the global impact of enteropathogens.
Collapse
Affiliation(s)
- Yrvin León
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|