1
|
Da Fonseca Ferreira A, Roquigny R, Grard T, Le Bris C. Temporal and Spatial Dynamics of Vibrio harveyi: An Environmental Parameter Correlation Investigation in a 4-Metre-Deep Dicentrarchus labrax Aquaculture Tank. Microorganisms 2024; 12:1104. [PMID: 38930486 PMCID: PMC11205727 DOI: 10.3390/microorganisms12061104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Nowadays, European seabass (Dicentrarchus labrax) aquaculture is undergoing a significant expansion. Nevertheless, the aquaculture industry is plagued by vibriosis. The spatial and temporal dynamics of Vibrio harveyi were studied on a European seabass farm in northern France during seven months of 2022. Concrete specimens were suspended and water was pumped from different depths (0.3 m, 2.15 m and 4 m deep), providing insights into the biofilm and planktonic V. harveyi dynamics. The abundances of V. harveyi, in the biofilm and free-living forms, were positively correlated. The water parameters revealed seasonal fluctuations in temperature, pH, and salinity, with no significant differences observed across the water column. Quantification of V. harveyi revealed no significant differences between depths, but seasonality, with peak abundances observed in August, correlated with temperature increases. Principal component analysis identified temperature as a primary driver, but also additional parameters, such as salinity and pH. Vibriosis occurred during the sampling period, providing valuable insights into the conditions before, during, and after the outbreaks. This study underscores the importance of understanding V. harveyi behaviour in aquaculture, particularly in the context of global warming, for effective disease management and sustainable practices.
Collapse
Affiliation(s)
| | | | | | - Cédric Le Bris
- Université du Littoral Côte d’Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Université d’Artois, Université de Lille, Université Picardie Jules Verne, Université de Liège, Junia, 62200 Boulogne-sur-Mer, France; (A.D.F.F.); (R.R.); (T.G.)
| |
Collapse
|
2
|
Kah Sem NAD, Abd Gani S, Chong CM, Natrah I, Shamsi S. Management and Mitigation of Vibriosis in Aquaculture: Nanoparticles as Promising Alternatives. Int J Mol Sci 2023; 24:12542. [PMID: 37628723 PMCID: PMC10454253 DOI: 10.3390/ijms241612542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Vibriosis is one of the most common diseases in marine aquaculture, caused by bacteria belonging to the genus Vibrio, that has been affecting many species of economically significant aquatic organisms around the world. The prevention of vibriosis in aquaculture is difficult, and the various treatments for vibriosis have their limitations. Therefore, there is an imperative need to find new alternatives. This review is based on the studies on vibriosis, specifically on the various treatments and their limitations, as well as the application of nanoparticles in aquaculture. One of the promising nanoparticles is graphene oxide (GO), which has been used in various applications, particularly in biological applications such as biosensors, drug delivery, and potential treatment for infectious diseases. GO has been shown to have anti-bacterial properties against both Gram-positive and Gram-negative bacteria, but no research has been published that emphasizes its impact on Vibrio spp. The review aims to explore the potential use of GO for treatment against vibriosis.
Collapse
Affiliation(s)
- Nuan Anong Densaad Kah Sem
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Ikhsan Natrah
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| |
Collapse
|
3
|
Strem R, Meiri-Ashkenazi I, Segal N, Ehrlich R, Shashar N, Sharon G. Evaluation of Flathead Grey Mullets ( Mugil cephalus) Immunization and Long-Term Protection against Vibrio harveyi Infection Using Three Different Vaccine Preparations. Int J Mol Sci 2023; 24:8277. [PMID: 37175982 PMCID: PMC10179253 DOI: 10.3390/ijms24098277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
In recent years, flathead grey mullets (Mugil cephalus) cultured in Eilat (Israel) have been highly affected by Vibrio harveyi, showing neurological signs such as uncoordinated circular swimming followed by high mortality rates. Despite the advances in and different approaches to control vibriosis associated with Vibrio harveyi, including commercial vaccines, most of them have not succeeded in long-term protection. In this study, we evaluated the effectiveness, long-term protection, and antibody production of three vaccine preparations: heat-killed bacteria (HKB), membrane proteins denaturation (BME PROT), and internal proteins (INT PROT) developed specifically against Vibrio harveyi for grey mullets. Our results show that fish immunized with heat-killed bacteria emulsified with adjuvant presented the most effective and long-lasting protection against the bacterium, and a cross-protection against other bacteria from the harveyi clade. The effectiveness of each immunization treatment correlated with the levels of specific antibody production against Vibrio harveyi in the serum of the immunized fish.
Collapse
Affiliation(s)
- Rosa Strem
- Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, Eilat 8855630, Israel; (R.S.); (N.S.)
- Israel Oceanographic & Limnological Research Ltd.—National Center for Mariculture, Eilat 8811201, Israel; (I.M.-A.); (N.S.); (R.E.)
| | - Iris Meiri-Ashkenazi
- Israel Oceanographic & Limnological Research Ltd.—National Center for Mariculture, Eilat 8811201, Israel; (I.M.-A.); (N.S.); (R.E.)
| | - Na’ama Segal
- Israel Oceanographic & Limnological Research Ltd.—National Center for Mariculture, Eilat 8811201, Israel; (I.M.-A.); (N.S.); (R.E.)
| | - Roberto Ehrlich
- Israel Oceanographic & Limnological Research Ltd.—National Center for Mariculture, Eilat 8811201, Israel; (I.M.-A.); (N.S.); (R.E.)
| | - Nadav Shashar
- Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, Eilat 8855630, Israel; (R.S.); (N.S.)
| | - Galit Sharon
- Israel Oceanographic & Limnological Research Ltd.—National Center for Mariculture, Eilat 8811201, Israel; (I.M.-A.); (N.S.); (R.E.)
| |
Collapse
|
4
|
Mohd Ali NS, Saad MZ, Azmai MNA, Salleh A, Zulperi ZM, Manchanayake T, Zahaludin MAD, Basri L, Mohamad A, Md Yasin IS. Immunogenicity and Efficacy of a Feed-Based Bivalent Vaccine against Streptococcosis and Motile Aeromonad Septicemia in Red Hybrid Tilapia ( Oreochromis sp.). Animals (Basel) 2023; 13:ani13081346. [PMID: 37106909 PMCID: PMC10135192 DOI: 10.3390/ani13081346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 04/29/2023] Open
Abstract
Streptococcosis and motile Aeromonad septicemia (MAS) are the main bacterial diseases in tilapia culture worldwide, causing significant economic losses. Vaccination is an effective method of preventing diseases and contributes to economic sustainability. This study investigated the immuno-protective efficacy of a newly developed feed-based bivalent vaccine against streptococcosis and MAS in red hybrid tilapia. The feed-based bivalent vaccine pellet was developed by incorporating the formalin-killed S. agalactiae and A. hydrophila antigens into a commercial feed pellet with palm oil as the adjuvant. The bivalent vaccine was subjected to feed quality analyses. For immunological analyses, 900 fish (12.94 ± 0.46 g) were divided into two treatment groups in triplicate. Fish in Group 1 were unvaccinated (control), while those in Group 2 were vaccinated with the bivalent vaccine. The bivalent vaccine was delivered orally at 5% of the fish's body weight for three consecutive days on week 0, followed by boosters on weeks 2 and 6. Lysozyme and enzyme-linked immunosorbent assays (ELISAs) on serum, gut lavage, and skin mucus were performed every week for 16 weeks. Lysozyme activity in vaccinated fish was significantly (p ≤ 0.05) higher than in unvaccinated fish following vaccination. Similarly, the IgM antibody levels of vaccinated fish were significantly (p ≤ 0.05) higher after vaccination. The bivalent vaccine provided high protective efficacy against S. agalactiae (80.00 ± 10.00%) and A. hydrophila (90.00 ± 10.00%) and partial cross-protective efficacy against S. iniae (63.33 ± 5.77%) and A. veronii (60.00 ± 10.00%). During the challenge test, fewer clinical and gross lesions were observed in vaccinated fish compared with unvaccinated fish. Histopathological assessment showed less severe pathological changes in selected organs than the unvaccinated fish. This study showed that vaccination with a feed-based bivalent vaccine improves immunological responses in red hybrid tilapia, and thus protects against streptococcosis and MAS.
Collapse
Affiliation(s)
- Nur Shidaa Mohd Ali
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zamri Saad
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Annas Salleh
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary, Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Zarirah Mohamed Zulperi
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Tilusha Manchanayake
- Department of Veterinary, Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Muhammad Amir Danial Zahaludin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Lukman Basri
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Aslah Mohamad
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Laboratory of Aquatic Animal Health and Therapeutics, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
5
|
Raju T, Manchanayake T, Danial A, Zamri-Saad M, Azmai MNA, Md Yasin IS, Mohd Nor N, Salleh A. Evaluating the Intestinal Immunity of Asian Seabass (Lates calcarifer, Bloch 1790) following Field Vaccination Using a Feed-Based Oral Vaccine. Vaccines (Basel) 2023; 11:vaccines11030602. [PMID: 36992186 DOI: 10.3390/vaccines11030602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
This study describes the levels of gut lysozyme and IgM, the number, size and density of gut-associated lymphoid tissue (GALT) regions, and the lymphocyte population in Asian seabass following field oral administration of a feed-based vaccine. Fish in a grow-out farm were selected and divided into two groups; Group 1 was vaccinated at week 0, 2, and 6, while Group 2 was not vaccinated. Samplings were done at 2-week intervals when the fish were observed for clinical signs, and gross lesions were recorded. The intestinal tissue and gut lavage fluid were collected. GALT regions (numbers, size, density and population of lymphocytes) were analyzed. Clinical signs such as abnormal swimming pattern and death, and gross lesions including scale loss, ocular opacity, and skin ulceration were observed in both groups. At the end of the study, the incidence rate between both groups were significantly different (p < 0.05). The gut IgM level and lysozyme activity, lymphocyte population, number, size and density of GALT regions of Group 1 were significantly (p < 0.05) higher than Group 2. Therefore, this study concludes that the feed-based vaccine reduces the incidence of vibriosis by stimulating the gut immunity of the vaccinated fish with an enhanced GALT region, specific IgM production against Vibrio harveyi, and lysozyme responses.
Collapse
Affiliation(s)
- Thanusha Raju
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Tilusha Manchanayake
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Amir Danial
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohd Zamri-Saad
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Mohammad Noor Amal Azmai
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Biology, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Ina Salwany Md Yasin
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norhariani Mohd Nor
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Annas Salleh
- Aquatic Animal Health and Therapeutics Laboratory (AquaHealth), Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
6
|
Immune Activation Following Vaccination of Streptococcus iniae Bacterin in Asian Seabass ( Lates calcarifer, Bloch 1790). Vaccines (Basel) 2023; 11:vaccines11020351. [PMID: 36851232 PMCID: PMC9963699 DOI: 10.3390/vaccines11020351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Juvenile Asian seabass (Lates calcarifer) (body weight 10 ± 0.7 g) were intraperitoneally injected with 1012 CFU fish-1 of formalin-killed Streptococcus iniae. The protective efficacy of the vaccine on survival and infection rate was assessed upon challenge at 4, 8, 12, 20, and 28 weeks post-vaccination. The results revealed that the challenged vaccinated fish showed no mortality at all time points, and the control fish presented 10-43.33% mortality. The infection rate at 2 weeks post-challenge was 0-13.33% in the vaccinated fish and 30-82.35% in the control group. At 8 weeks post-vaccination, the vaccinated fish showed comparable ELISA antibody levels with the control; however, the antibody levels of the vaccinated fish increased significantly after the challenge (p < 0.05), suggesting the presence of an adaptive response. Innate immune genes, including MHC I, MHC II, IL-1β, IL-4/13B, and IL-10, were significantly upregulated at 12 h post-challenge in the vaccinated fish but not in the control. In summary, vaccination with S. iniae bacterin provided substantial protection by stimulating the innate and specific immune responses of Asian seabass against S. iniae infection.
Collapse
|
7
|
Xu K, Wang Y, Yang W, Cai H, Zhang Y, Huang L. Strategies for Prevention and Control of Vibriosis in Asian Fish Culture. Vaccines (Basel) 2022; 11:vaccines11010098. [PMID: 36679943 PMCID: PMC9862775 DOI: 10.3390/vaccines11010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
It is estimated that vibriosis account for about half of the economic losses in Asian fish culture. Consequently, the prevention and control of vibriosis is one of the priority research topics in the field of Asian fish culture disease. Relevant measures have been proposed to control some Vibrios that pose a threat to Asian fish culture, but there are currently only a few effective vaccines available to combat these Vibrios. The purpose of our review is to sum up the main prevention methods and the latest control strategies of seven Vibrio species that cause great harm to Asian aquaculture, including Vibrio harveyi, Vibrio vulnificus, Vibrio parahaemolyticus, Vibrio mimicus, Vibrio anguillarum, Vibrio alginolyticus and Vibrio cholerae. Strategies such as antibiotics, probiotics, bacteriophages, antimicrobials from plants and other natural sources, as well as vaccines, are compared and discussed here. We expect this review will provide some new views and recommendations for the future better prevention and control of vibriosis in Asian fish culture.
Collapse
Affiliation(s)
- Kangping Xu
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Yushu Wang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Wangxiaohan Yang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Hongyan Cai
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
| | - Youyu Zhang
- Institute of Electromagnetics and Acoustics, School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, China
- Correspondence: (Y.Z.); (L.H.)
| | - Lixing Huang
- Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture, Jimei University, Xiamen 361021, China
- Fisheries College, Fujian Engineering Research Center of Aquatic Breeding and Healthy Aquaculture, Jimei University, Xiamen 361021, China
- Correspondence: (Y.Z.); (L.H.)
| |
Collapse
|
8
|
Field Efficacy of a Feed-Based Inactivated Vaccine against Vibriosis in Cage-Cultured Asian Seabass, Lates calcarifer, in Malaysia. Vaccines (Basel) 2022; 11:vaccines11010009. [PMID: 36679854 PMCID: PMC9865705 DOI: 10.3390/vaccines11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Vibrio spp. are important aquaculture pathogens that cause vibriosis, affecting large numbers of marine fish species. This study determines the field efficacy of a feed-based inactivated vaccine against vibriosis in cage-cultured Asian seabass. A total of 4800 Asian seabass, kept in a field environment, were separated equally into two groups (vaccinated and non-vaccinated) in duplicate. Fish of Group 1 were orally administered the feed-based vaccine on weeks 0 (prime vaccination), 2 (booster), and 6 (second booster) at 4% body weight, while the non-vaccinated fish of Group 2 were fed with a commercial formulated pellet without the vaccine. Fish gut, mucus, and serum were collected, the length and weight of the fish were noted, while the mortality was recorded at 2-week intervals for a period of 16 weeks. The non-specific lysozyme activities were significantly (p < 0.05) higher in the fish of Group 1 than the non-vaccinated fish of Group 2. Similarly, the specific IgM antibody levels in serum and mucus were significantly (p < 0.05) higher in Group 1 than in Group 2, as seen in the second week, with the highest level 8 weeks after primary immunization. At week 16, the growth performance was significantly (p < 0.05) better in Group 1 and showed lower bacterial isolation in the gut than Group 2. Despite the statistical insignificance (p > 0.05), the survival rate was slightly higher in Group 1 (71.3%) than Group 2 (67.7%). This study revealed that feed-based vaccination improves growth performance, stimulates innate and adaptive immune responses, and increases protection of cultured Asian seabass, L. calcarifer, against vibriosis.
Collapse
|
9
|
Linh NV, Dien LT, Sangpo P, Senapin S, Thapinta A, Panphut W, St-Hilaire S, Rodkhum C, Dong HT. Pre-treatment of Nile tilapia (Oreochromis niloticus) with ozone nanobubbles improve efficacy of heat-killed Streptococcus agalactiae immersion vaccine. FISH & SHELLFISH IMMUNOLOGY 2022; 123:229-237. [PMID: 35288305 DOI: 10.1016/j.fsi.2022.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Nanobubble technology has shown appealing technical benefits and potential applications in aquaculture. We recently found that treatment with ozone nanobubbles (NB-O3) activated expression of several immune-related genes leading to effective response to subsequent exposure to fish pathogens. In this study, we investigated whether pre-treatment of Nile tilapia (Oreochromis niloticus) with NB-O3 can enhance specific immune responses and improve efficacy of immersion vaccination against Streptococcus agalactiae. Spleen and head kidney of fish in the vaccinated groups showed a substantial upregulation in expression levels of pro-inflammatory cytokine genes (IL-1β, TNF-α, IL-6) and immunoglobulin classes (IgM, IgD, IgT) compared with the unvaccinated control groups. The mRNA transcript of pro-inflammatory cytokine genes was greatest (approx. 2.8-3.3 folds) on day 7 post-vaccination, whereas the relative expression of immunoglobulin genes was greatest (approx. 3.2-4.1 folds) on day 21 post-immunization. Both systemic and mucosal IgM antibodies were elicited in vaccinated groups. As the result, the cumulative survival rate of the vaccinated groups was found to be higher than that of the unvaccinated groups, with a relative percent survival (RPS) ranging from 52.9 to 70.5%. However, fish in the vaccinated groups that received pre-treatment with NB-O3, bacterial antigen uptakes, expression levels of IL-1β, TNF-α, IL-6,IgM, IgD, and IgT, as well as the specific-IgM antibody levels and percent survival, were all slightly or significantly higher than that of the vaccinated group without pre-treatment with NB-O3. Taken together, our findings suggest that utilizing pre-treatment with NB-O3 may improve the immune response and efficacy of immersion vaccination in Nile tilapia.
Collapse
Affiliation(s)
- Nguyen Vu Linh
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Le Thanh Dien
- Faculty of Applied Technology, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, 71415, Viet Nam
| | - Pattiya Sangpo
- Fish Health Platform, Centex of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Saengchan Senapin
- Fish Health Platform, Centex of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand; National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anat Thapinta
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Wattana Panphut
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand
| | - Sophie St-Hilaire
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Channarong Rodkhum
- Center of Excellence in Fish Infectious Diseases (CE FID), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Ha Thanh Dong
- Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand; Department of Food, Agriculture and Bioresources, School of Environment, Resources and Development, Asian Institute of Technology, Pathum Thani, 12120, Thailand.
| |
Collapse
|
10
|
Ridzuan MSM, Abdullah A, Ramly R, Mansor NN, Ramli N, Firdaus-Nawi M. Current status and advances of fish vaccines in Malaysia. Vet World 2022; 15:465-482. [PMID: 35400970 PMCID: PMC8980389 DOI: 10.14202/vetworld.2022.465-482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/21/2022] [Indexed: 01/08/2023] Open
Abstract
Fish diseases have a significant negative influence on the Malaysian aquaculture industry. Since the 1980s, the sector has grown in size, which has resulted in a rise in the prevalence of infectious outbreaks affecting both freshwater and marine cultured fish species. Demand for commercially available fish vaccinations is predicted to increase as infectious disease outbreaks continue to occur. In Malaysia, aquaculture vaccine research and development (R&D) are still in its infancy, with most efforts concentrating on producing vaccines against bacterial infections, most notably streptococcosis, vibriosis, and motile Aeromonas septicemia. Despite several attempts, no homegrown vaccine has been effectively introduced into the manufacturing pipeline to date. At the moment, only three imported aquatic vaccines have received full permission, a far cry from the 314 and 60 vaccines licensed in the poultry and porcine industries, respectively. This review will describe recent findings regarding the development of aquaculture vaccines for certain fish species and diseases in Malaysia. In our opinion, R&D on fish vaccines is critical to the aquaculture industry's viability.
Collapse
Affiliation(s)
- Mohd Syafiq Mohammad Ridzuan
- Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; National Fish Health Research Division, Fisheries Research Institute Batu Maung, Department of Fisheries Malaysia, 11960 Batu Maung, Penang, Malaysia
| | - Azila Abdullah
- National Fish Health Research Division, Fisheries Research Institute Batu Maung, Department of Fisheries Malaysia, 11960 Batu Maung, Penang, Malaysia
| | - Rimatulhana Ramly
- National Fish Health Research Division, Fisheries Research Institute Batu Maung, Department of Fisheries Malaysia, 11960 Batu Maung, Penang, Malaysia
| | - Nur Nazifah Mansor
- Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Norazsida Ramli
- Kulliyyah of Allied Health Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia
| | - Mohd. Firdaus-Nawi
- Department of Marine Science, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia; Laboratory of Aquatic Animal Health, Institute of Oceanography and Maritime Studies, International Islamic University Malaysia, Cherok Paloh, 26060 Kuantan, Pahang, Malaysia
| |
Collapse
|
11
|
Yang J, Yang XL, Su YB, Peng XX, Li H. Activation of the TCA Cycle to Provide Immune Protection in Zebrafish Immunized by High Magnesium-Prepared Vibrio alginolyticus Vaccine. Front Immunol 2021; 12:739591. [PMID: 34950133 PMCID: PMC8688852 DOI: 10.3389/fimmu.2021.739591] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022] Open
Abstract
Vaccines are safe and efficient in controlling bacterial diseases in the aquaculture industry and are in line with green farming. The present study develops a previously unreported approach to prepare a live-attenuated V. alginolyticus vaccine by culturing bacteria in a high concentration of magnesium to attenuate bacterial virulence. Furthermore, metabolomes of zebrafish immunized with the live-attenuated vaccines were compared with those of survival and dying zebrafish infected by V. alginolyticus. The enhanced TCA cycle and increased fumarate were identified as the most key metabolic pathways and the crucial biomarker of vaccine-mediated and survival fish, respectively. Exogenous fumarate promoted expression of il1β, il8, il21, nf-κb, and lysozyme in a dose-dependent manner. Among the five innate immune genes, the elevated il1β, il8, and lysozyme are overlapped in the vaccine-immunized zebrafish and the survival from the infection. These findings highlight a way in development of vaccines and exploration of the underlying mechanisms.
Collapse
Affiliation(s)
- Jun Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xiao-Li Yang
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yu-Bin Su
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Department of Biotechnology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xuan-Xian Peng
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- Center for Proteomics and Metabolomics, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-sen University, Guangzhou, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|