1
|
Bagwe P, Bajaj L, Menon I, Braz Gomes K, Kale A, Patil S, Vijayanand S, Gala R, D'Souza MJ, Zughaier SM. Gonococcal microparticle vaccine in dissolving microneedles induced immunity and enhanced bacterial clearance in infected mice. Int J Pharm 2023; 642:123182. [PMID: 37369287 PMCID: PMC10529368 DOI: 10.1016/j.ijpharm.2023.123182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 06/29/2023]
Abstract
There is an alarming rise in the number of gonorrhea cases worldwide. Neisseria gonorrhoeae, the bacteria that causes gonorrhea infection, has gradually developed antimicrobial resistance over the years. To date, there is no licensed vaccine for gonorrhea. This study investigates the in vivo immunogenicity of a whole-cell inactivated gonococci in a microparticle formulation (Gc-MP) along with adjuvant microparticles (Alhydrogel®- Alum MP and AddaVax™ MP) delivered transdermally using dissolving microneedles (MN). The proposed vaccine formulation (Gc-MP + Alum MP + AddaVax™ MP) was assessed for induction of humoral, cellular, and protective immune responses in vivo. Our results show the induction of significant gonococcal-specific serum IgG, IgG1, IgG2a, and vaginal mucosal IgA antibodies in mice immunized with Gc-MP + Alum MP + AddaVax™ MP and Gc-MP when compared to the control groups receiving blank MN or no treatment. The serum bactericidal assay revealed that the antibodies generated in mice after immunization with Gc-MP + Alum MP + AddaVax™ MP were bactericidal towards live Neisseria gonorrhoeae. Gc-MP + Alum MP + AddaVax™ MP and Gc-MP-immunized mice showed enhanced clearance rate of gonococcal bacterial infection post challenge. In contrast, the control groups did not begin to clear the infection until day 10. In addition, the mice which received Gc-MP + Alum MP + AddaVax™ MP showed enhanced expression of cellular immunity markers CD4 and CD8 on the surface of T cells in the spleen and lymph nodes. Taken together, the data shows that microneedle immunization with whole-cell inactivated gonococci MP in mice induced humoral, cellular, and protective immunity against gonococcal infection.
Collapse
Affiliation(s)
- Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Lotika Bajaj
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Ipshita Menon
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Keegan Braz Gomes
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Akanksha Kale
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Smital Patil
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Sharon Vijayanand
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA
| | - Rikhav Gala
- Fraunhofer USA, Center Mid-Atlantic, Biotechnology Division, 9, Innovation Way, Newark, DE 19011, USA
| | - Martin J D'Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA.
| | - Susu M Zughaier
- College of Medicine, QU Health, Qatar University, PO Box 2731, Doha, Qatar.
| |
Collapse
|
2
|
Bagwe P, Bajaj L, Gala RP, D‘Souza MJ, Zughaier SM. Assessment of In Vitro Immunostimulatory Activity of an Adjuvanted Whole-Cell Inactivated Neisseria gonorrhoeae Microparticle Vaccine Formulation. Vaccines (Basel) 2022; 10:983. [PMID: 35891147 PMCID: PMC9320116 DOI: 10.3390/vaccines10070983] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
The emergence of drug-resistant gonorrhea infections worldwide combined with the lack of a vaccine is alarming. We prepared a novel microparticulate (MP) vaccine formulation using whole-cell inactivated Neisseria gonorrhoeae as the vaccine antigen, with Alum and AddaVax™ as vaccine adjuvants. The adjuvanted vaccine MP formulation was assessed for in vitro immunostimulatory activity, autophagy, and antigen presentation ability. The data shows that the adjuvanted gonococci vaccine MP enhanced autophagy induction in antigen presenting cells (APCs) compared to gonococci vaccine MP without adjuvants, which is important for enhancing antigen presentation. In addition, the adjuvanted vaccine formulation increased the surface expression of antigen presenting molecules MHCI and MHCII as well as co-stimulatory molecules CD40 and CD86 on the surface of dendritic cells. In addition, the gonococci vaccine microparticles at lower doses did not significantly increase the expression of the death receptor CD95 in APCs, which when elevated leads to suboptimal antigen presentation and reduced immune responses. The adjuvanted whole-cell inactivated gonococci microparticle vaccine formulation enhanced antigen uptake, processing, and antigen presentation.
Collapse
Affiliation(s)
- Priyal Bagwe
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (P.B.); (L.B.); (M.J.D.)
| | - Lotika Bajaj
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (P.B.); (L.B.); (M.J.D.)
| | - Rikhav P. Gala
- Fraunhofer USA, Center Mid-Atlantic, Biotechnology Division, 9, Innovation Way, Newark, DE 19011, USA;
| | - Martin J. D‘Souza
- Vaccine Nanotechnology Laboratory, Center for Drug Delivery Research, College of Pharmacy, Mercer University, Atlanta, GA 30341, USA; (P.B.); (L.B.); (M.J.D.)
| | - Susu M. Zughaier
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2731, Qatar
| |
Collapse
|
3
|
Joshi D, Gala RP, Uddin MN, D'Souza MJ. Novel ablative laser mediated transdermal immunization for microparticulate measles vaccine. Int J Pharm 2021; 606:120882. [PMID: 34298102 DOI: 10.1016/j.ijpharm.2021.120882] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/20/2022]
Abstract
With the need for safe and efficacious vaccines which could be administered via non-invasive procedure, alternatives to traditional injectables vaccines are sought after. The present study aimed to develop the microparticulate formulation of measles vaccine and explore the feasibility of transdermal delivery via ablative laser mediated skin microporation. Transdermal route offers several advantages including painless immunization and ease of administration. We propose to use P.L.E.A.S.E. ablative laser for transdermal immunization of the microparticulate measles vaccine. This laser emits energy at 2940 µm, enabling cold ablation. This creates the micropores of defined size for delivery of vaccines into the skin. We compared the efficacy of transdermal immunization using the particulate formulation of the vaccine to that of traditional subcutaneous immunization using soluble and particulate vaccine. The microparticles were formulated using the biocompatible and biodegradable bovine serum albumin (BSA)-based polymer matrix. These vaccine microparticles were non-cytotoxic to the antigen presenting cells (APCs) and could effectively stimulate the innate immune response, confirmed by release of nitric oxide (NO) from the Griess's assay. The APCs when exposed to vaccine microparticles also showed a significantly higher expression of antigen-presenting molecules, MHC I and MHC II, and their co-stimulatory molecules, CD80 and CD40 as compared to the blank microparticles. The microparticulate measles vaccine was evaluated in vivo in the murine model. We compared the serum IgG and IgM levels in the mice receiving the vaccine subcutaneously and transdermally post-immunization. The results revealed that transdermal immunization with microparticulate vaccine is as efficient as the traditional subcutaneous administration.
Collapse
Affiliation(s)
- Devyani Joshi
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Rikhav P Gala
- Fraunhofer USA, Center Mid-Atlantic, Biotechnology Division, Newark, DE 19702, United States
| | - Mohammad N Uddin
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States
| | - Martin J D'Souza
- Center for Drug Delivery Research, Vaccine Nanotechnology Laboratory, College of Pharmacy, Mercer University, Atlanta, GA 30341, United States.
| |
Collapse
|