1
|
Iwanowitsch A, Diessner J, Bergmann B, Rudel T. The JMU-SalVac-System: A Novel, Versatile Approach to Oral Live Vaccine Development. Vaccines (Basel) 2024; 12:687. [PMID: 38932416 PMCID: PMC11209359 DOI: 10.3390/vaccines12060687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Salmonella enterica Serovar Typhi Ty21a (Ty21a) is the only licensed oral vaccine against typhoid fever. Due to its excellent safety profile, it has been used as a promising vector strain for the expression of heterologous antigens for mucosal immunization. As the efficacy of any bacterial live vector vaccine correlates with its ability to express and present sufficient antigen, the genes for antigen expression are traditionally located on plasmids with antibiotic resistance genes for stabilization. However, for use in humans, antibiotic selection of plasmids is not applicable, leading to segregational loss of the antigen-producing plasmid. Therefore, we developed an oral Ty21a-based vaccine platform technology, the JMU-SalVac-system (Julius-Maximilians-Universität Würzburg) in which the antigen delivery plasmids (pSalVac-plasmid-series) are stabilized by a ΔtyrS/tyrS+-based balanced-lethal system (BLS). The system is made up of the chromosomal knockout of the essential tyrosyl-tRNA-synthetase gene (tyrS) and the in trans complementation of tyrS on the pSalVac-plasmid. Further novel functional features of the pSalVac-plasmids are the presence of two different expression cassettes for the expression of protein antigens. In this study, we present the construction of vaccine strains with BLS plasmids for antigen expression. The expression of cytosolic and secreted mRFP and cholera toxin subunit B (CTB) proteins as model antigens is used to demonstrate the versatility of the approach. As proof of concept, we show the induction of previously described in vivo inducible promoters cloned into pSalVac-plasmids during infection of primary macrophages and demonstrate the expression of model vaccine antigens in these relevant human target cells. Therefore, antigen delivery strains developed with the JMU-SalVac technology are promising, safe and stable vaccine strains to be used against mucosal infections in humans.
Collapse
Affiliation(s)
| | - Joachim Diessner
- Department of Obstetrics and Gynecology, University Hospital Würzburg, 97080 Würzburg, Germany;
| | - Birgit Bergmann
- Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany;
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg, 97074 Würzburg, Germany;
| |
Collapse
|
2
|
Chandran S, Hewawaduge C, Aganja RP, Lee JH. Prokaryotic and eukaryotic dual-expression plasmid-mediated delivery of Campylobacter jejuni antigens by live-attenuated Salmonella: A strategy for concurrent Th1 and Th2 immune activation and protection in chickens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 153:105134. [PMID: 38190867 DOI: 10.1016/j.dci.2024.105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/01/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Salmonella and Campylobacter are food-borne pathogens that significantly affect poultry production and are transmitted to humans. Long-term protection against these pathogens in chicken relies on a balanced Th1 and Th2 response. C. jejuni antigens were screened and a fusion antigen, including CadF + FlaA adhesin and flagellin antigenic fragments was developed and safely delivered by low-endotoxicity S. Typhimurium through pJHL270, a dual-expression plasmid featuring prokaryotic (Ptrc) and eukaryotic (CMV) promoters. Antigen expression in Salmonella and host cells was confirmed by western blotting and IFA. The vaccine construct JOL2999, triggered significant increases in IgY, IgA antibodies, CD4+ and CD8+ T cells, indicating humoral, mucosal, and cell-mediated responses against both pathogens. Elevations in pro-inflammatory cytokines TNFα, INF-γ, IL-2, and IL-4 and MHC I and II cell populations further suggest simultaneous Th1 and Th2 immune activation. Reduced pathogen load and histopathological inflammatory signs in vital organs upon challenge confirmed the protective efficacy in chickens.
Collapse
Affiliation(s)
- Sivasankar Chandran
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Ram Prasad Aganja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
3
|
Hewawaduge C, Kwon J, Sivasankar C, Park JY, Senevirathne A, Lee JH. Salmonella delivers H9N2 influenza virus antigens via a prokaryotic and eukaryotic dual-expression vector and elicits bivalent protection against avian influenza and fowl typhoid. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 149:105058. [PMID: 37714394 DOI: 10.1016/j.dci.2023.105058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
The H9N2 avian influenza virus significantly affects the health of poultry and humans. We identified a prokaryotic and eukaryotic dual-expression vector system, pJHL270, that can provide simultaneous MHC class I and II stimulation of the host immune system, and we designed vaccine antigens by selecting the consensus HA1 sequence and M2e antigens from H9N2 virus circulating in South Korea from 2000 to 2021. The genes were cloned into the pJHL270 vector, and the cloned plasmid was delivered by a live-attenuated Salmonella Gallinarum (SG) strain. The immunity and protective efficacy of the SG-based H9N2 vaccine construct, JOL2922, against avian influenza and fowl typhoid (FT) were evaluated. The Ptrc and CMV promoters conferred antigen expression in prokaryotic and eukaryotic cells to induce balanced Th-1/Th-2 immunity. Chickens immunized with JOL2922 yielded high antigen-specific humoral and mucosal immune responses. qRT-PCR revealed that the strain generated polyfunctional IFN-γ and IL-4 secretion in immunized chickens. Furthermore, a FACS analysis showed increased CD3CD4+ and CD3CD8+ T-cell subpopulations following immunization. Peripheral Blood Mononuclear Cells (PBMCs) harvested from the immunized chickens significantly increased MHC class I and II expression, 3.5-fold and 2.5-fold increases, respectively. Serum collected from the immunized groups had an evident hemagglutinin inhibition titer of ≥6 log2. Immunization reduced the lung viral titer by 3.8-fold within 5 days post-infection. The strain also generated SG-specific humoral and cellular immune responses. The immunized birds all survived a virulent SG wild-type challenge. In addition, the bacterial burden was reduced by 2.7-fold and 2.1-fold in spleen and liver tissue, respectively, collected from immunized chickens. Our data indicate that an attenuated SG strain successfully delivered the dual-expression vector system and co-stimulated MHC class I and II antigen presentation pathways via exogenous and endogenous antigen presentation, thereby triggering a balanced Th-1/Th-2-based immune response and conferring effective protection against avian influenza and FT.
Collapse
Affiliation(s)
- Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Jun Kwon
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Chandran Sivasankar
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Republic of Korea.
| |
Collapse
|
4
|
Lloren KKS, Lee JH. Live-Attenuated Salmonella-Based Oral Vaccine Candidates Expressing PCV2d Cap and Rep by Novel Expression Plasmids as a Vaccination Strategy for Mucosal and Systemic Immune Responses against PCV2d. Vaccines (Basel) 2023; 11:1777. [PMID: 38140182 PMCID: PMC10748173 DOI: 10.3390/vaccines11121777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Oral vaccines are highly envisaged for veterinary applications due to their convenience and ability to induce protective mucosal immunity as the first line of defense. The present investigation harnessed live-attenuated Salmonella Typhimurium to orally deliver novel expression vector systems containing the Cap and Rep genes from porcine circovirus type 2 (PCV2), a significant swine pathogen. The antigen expression by the vaccine candidates JOL2885 and JOL2886, comprising eukaryotic pJHL204 and pro-eukaryotic expression pJHL270 plasmids, respectively, was confirmed by Western blot and IFA. We evaluated their immunogenicity and protective efficacy through oral vaccination in a mouse model. This approach elicited both mucosal and systemic immunity against PCV2d. Oral administration of the candidates induced PCV2-specific sIgA, serum IgG antibodies, and neutralizing antibodies, resulting in reduced viral loads in the livers and lungs of PCV2d-challenged mice. T-lymphocyte proliferation and flow-cytometry assays confirmed enhanced cellular immune responses after oral inoculation. The synchronized elicitation of both Th1 and Th2 responses was also confirmed by enhanced expression of TNF-α, IFN-γ, IL-4, MHC-I, and MHC-II. Our findings highlight the effectiveness and safety of the constructs with an engineered-attenuated S. Typhimurium, suggesting its potential application as an oral PCV2 vaccine candidate.
Collapse
Affiliation(s)
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Republic of Korea;
| |
Collapse
|
5
|
Park S, Jung B, Kim E, Yoon H, Hahn TW. Evaluation of Salmonella Typhimurium Lacking fruR, ssrAB, or hfq as a Prophylactic Vaccine against Salmonella Lethal Infection. Vaccines (Basel) 2022; 10:vaccines10091413. [PMID: 36146494 PMCID: PMC9506222 DOI: 10.3390/vaccines10091413] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) is one of the primary causes of foodborne gastroenteritis; occasionally, it causes invasive infection in humans. Because of its broad host range, covering diverse livestock species, foods of animal origin pose a critical threat of NTS contamination. However, there is currently no licensed vaccine against NTS infection. FruR, also known as Cra (catabolite repressor/activator), was initially identified as the transcriptional repressor of the fructose (fru) operon, and then found to activate or repress the transcription of many different genes associated with carbon and energy metabolism. In view of its role as a global regulator, we constructed a live attenuated vaccine candidate, ΔfruR, and evaluated its prophylactic effect against NTS infection in mice. A Salmonella Typhimurium mutant strain lacking fruR was defective in survival inside macrophages and exhibited attenuated virulence in infected mice. Immunization with the ΔfruR mutant stimulated the production of antibodies, including the IgG, IgM, and IgG subclasses, and afforded a protection of 100% to mice against the challenge of lethal infection with a virulent Salmonella strain. The prophylactic effect obtained after ΔfruR immunization was also validated by the absence of signs of hepatosplenomegaly, as these mice had comparable liver and spleen weights in comparison with healthy mice. These results suggest that the ΔfruR mutant strain can be further exploited as a promising vaccine candidate against Salmonella lethal infection.
Collapse
Affiliation(s)
- Soyeon Park
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Bogyo Jung
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
| | - Eunsuk Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| | - Tae-Wook Hahn
- Department of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Korea
- Correspondence: (H.Y.); (T.-W.H.)
| |
Collapse
|
6
|
Luria-Pérez R, Sánchez-Vargas LA, Muñoz-López P, Mellado-Sánchez G. Mucosal Vaccination: A Promising Alternative Against Flaviviruses. Front Cell Infect Microbiol 2022; 12:887729. [PMID: 35782117 PMCID: PMC9241634 DOI: 10.3389/fcimb.2022.887729] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/10/2022] [Indexed: 12/15/2022] Open
Abstract
The Flaviviridae are a family of positive-sense, single-stranded RNA enveloped viruses, and their members belong to a single genus, Flavivirus. Flaviviruses are found in mosquitoes and ticks; they are etiological agents of: dengue fever, Japanese encephalitis, West Nile virus infection, Zika virus infection, tick-borne encephalitis, and yellow fever, among others. Only a few flavivirus vaccines have been licensed for use in humans: yellow fever, dengue fever, Japanese encephalitis, tick-borne encephalitis, and Kyasanur forest disease. However, improvement is necessary in vaccination strategies and in understanding of the immunological mechanisms involved either in the infection or after vaccination. This is especially important in dengue, due to the immunological complexity of its four serotypes, cross-reactive responses, antibody-dependent enhancement, and immunological interference. In this context, mucosal vaccines represent a promising alternative against flaviviruses. Mucosal vaccination has several advantages, as inducing long-term protective immunity in both mucosal and parenteral tissues. It constitutes a friendly route of antigen administration because it is needle-free and allows for a variety of antigen delivery systems. This has promoted the development of several ways to stimulate immunity through the direct administration of antigens (e.g., inactivated virus, attenuated virus, subunits, and DNA), non-replicating vectors (e.g., nanoparticles, liposomes, bacterial ghosts, and defective-replication viral vectors), and replicating vectors (e.g., Salmonella enterica, Lactococcus lactis, Saccharomyces cerevisiae, and viral vectors). Because of these characteristics, mucosal vaccination has been explored for immunoprophylaxis against pathogens that enter the host through mucosae or parenteral areas. It is suitable against flaviviruses because this type of immunization can stimulate the parenteral responses required after bites from flavivirus-infected insects. This review focuses on the advantages of mucosal vaccine candidates against the most relevant flaviviruses in either humans or animals, providing supporting data on the feasibility of this administration route for future clinical trials.
Collapse
Affiliation(s)
- Rosendo Luria-Pérez
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
| | - Luis A. Sánchez-Vargas
- Department of Cell and Molecular Biology, Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, United States
| | - Paola Muñoz-López
- Hospital Infantil de México Federico Gómez, Unidad de Investigación en Enfermedades Hemato-Oncológicas, Ciudad de México, Mexico
- Posgrado en Biomedicina y Biotecnología Molecular, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Gabriela Mellado-Sánchez
- Unidad de Desarrollo e Investigación en Bioterapéuticos (UDIBI), Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, Mexico
- Laboratorio Nacional para Servicios Especializados de Investigación, Desarrollo e Innovación (I+D+i) para Farmoquímicos y Biotecnológicos, LANSEIDI-FarBiotec-CONACyT, Ciudad de México, Mexico
| |
Collapse
|
7
|
Lou H, Li X, Sheng X, Fang S, Wan S, Sun A, Chen H. Development of a Trivalent Construct Omp18/AhpC/FlgH Multi Epitope Peptide Vaccine Against Campylobacter jejuni. Front Microbiol 2022; 12:773697. [PMID: 35095793 PMCID: PMC8793626 DOI: 10.3389/fmicb.2021.773697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/29/2021] [Indexed: 11/25/2022] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the major pathogens contributing to the enteritis in humans. Infection can lead to numerous complications, including but not limited to Guillain-Barre syndrome, reactive arthritis, and Reiter’s syndrome. Over the past two decades, joint efforts have been made toward developing a proper strategy of limiting the transmission of C. jejuni to humans. Nevertheless, except for biosecurity measures, no available vaccine has been developed so far. Judging from the research findings, Omp18, AhpC outer membrane protein, and FlgH flagellin subunits of C. jejuni could be adopted as surface protein antigens of C. jejuni for screening dominant epitope thanks to their strong antigenicity, expression of varying strains, and conservative sequence. In this study, bioinformatics technology was adopted to analyze the T-B antigenic epitopes of Omp18, AhpC, and FlgH in C. jejuni strain NCTC11168. Both ELISA and Western Blot methods were adopted to screen the dominant T-B combined epitope. GGS (GGCGGTAGC) sequence was adopted to connect the dominant T-B combined epitope peptides and to construct the prokaryotic expression system of tandem repeats of antigenic epitope peptides. The mouse infection model was adopted to assess the immunoprotective effect imposed by the trivalent T-B combined with antigen epitope peptide based on Omp18/AhpC/FlgH. In this study, a tandem epitope AhpC-2/Omp18-1/FlgH-1 was developed, which was composed of three epitopes and could effectively enhance the stability and antigenicity of the epitope while preserving its structure. The immunization of BALB/c mice with a tandem epitope could induce protective immunity accompanied by the generation of IgG2a antibody response through the in vitro synthesis of IFN-γ cytokines. Judging from the results of immune protection experiments, the colonization of C. jejuni declined to a significant extent, and it was expected that AhpC-2/Omp18-1/FlgH-1 could be adopted as a candidate antigen for genetic engineering vaccine of C. jejuni MAP.
Collapse
Affiliation(s)
- Hongqiang Lou
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xusheng Li
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Xiusheng Sheng
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| | - Shuiqin Fang
- Shanghai Prajna Biotech Co., Ltd., Shanghai, China
| | - Shaoye Wan
- Shanghai Prajna Biotech Co., Ltd., Shanghai, China
| | - Aihua Sun
- Department of Pathogen Biology and Immunology, School of Basic Medicine and Forensic Medicine, Hangzhou Medical College, Hangzhou, China
| | - Haohao Chen
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua Polytechnic, Jinhua, China
| |
Collapse
|