1
|
Xu Y, Saiding Q, Zhou X, Wang J, Cui W, Chen X. Electrospun fiber-based immune engineering in regenerative medicine. SMART MEDICINE 2024; 3:e20230034. [PMID: 39188511 PMCID: PMC11235953 DOI: 10.1002/smmd.20230034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/26/2024] [Indexed: 08/28/2024]
Abstract
Immune engineering, a burgeoning field within regenerative medicine, involves a spectrum of strategies to optimize the intricate interplay between tissue regenerative biomaterials and the host tissue. These strategies are applied across different types of biomaterials and various disease models, which encompasses finely modulating the immune response at the levels of immune cells and factors, aiming to mitigate adverse effects like fibrosis and persistent inflammation that may arise at the injury site and consequently promote tissue regeneration. With the continuous progress in electrospinning technology, the immunoregulatory capabilities of electrospun fibers have gained substantial attention over the years. Electrospun fibers, with their extracellular matrix-like characteristics, high surface-area-to-volume ratio, and reliable pharmaceutical compound capacity, have emerged as key players among tissue engineering materials. This review specifically focuses on the role of electrospun fiber-based immune engineering, emphasizing their unique design strategies. Notably, electrospinning actively engages in immune engineering by modulating immune responses through four essential strategies: (i) surface modification, (ii) drug loading, (iii) physicochemical parameters, and (iv) biological grafting. This review presents a comprehensive overview of the intricate mechanisms of the immune system in injured tissues while unveiling the key strategies adopted by electrospun fibers to orchestrate immune regulation. Furthermore, the review explores the current developmental trends and limitations concerning the immunoregulatory function of electrospun fibers, aiming to drive the advancements in electrospun fiber-based immune engineering to its full potential.
Collapse
Affiliation(s)
- Yiru Xu
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Qimanguli Saiding
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xue Zhou
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| | - Juan Wang
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wenguo Cui
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinliang Chen
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghaiChina
- Shanghai Key Laboratory of Embryo Original DiseasesShanghaiChina
| |
Collapse
|
2
|
Bravo-Vázquez LA, Mora-Hernández EO, Rodríguez AL, Sahare P, Bandyopadhyay A, Duttaroy AK, Paul S. Current Advances of Plant-Based Vaccines for Neurodegenerative Diseases. Pharmaceutics 2023; 15:711. [PMID: 36840033 PMCID: PMC9963606 DOI: 10.3390/pharmaceutics15020711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by the progressive degeneration and/or loss of neurons belonging to the central nervous system, and represent one of the major global health issues. Therefore, a number of immunotherapeutic approaches targeting the non-functional or toxic proteins that induce neurodegeneration in NDDs have been designed in the last decades. In this context, due to unprecedented advances in genetic engineering techniques and molecular farming technology, pioneering plant-based immunogenic antigen expression systems have been developed aiming to offer reliable alternatives to deal with important NDDs, including Alzheimer's disease, Parkinson's disease, and multiple sclerosis. Diverse reports have evidenced that plant-made vaccines trigger significant immune responses in model animals, supported by the production of antibodies against the aberrant proteins expressed in the aforementioned NDDs. Moreover, these immunogenic tools have various advantages that make them a viable alternative for preventing and treating NDDs, such as high scalability, no risk of contamination with human pathogens, cold chain free production, and lower production costs. Hence, this article presents an overview of the current progress on plant-manufactured vaccines for NDDs and discusses its future prospects.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Erick Octavio Mora-Hernández
- School of Engineering and Sciences, Campus Mexico City, Tecnologico de Monterrey, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, Mexico City 14380, Mexico
| | - Alma L. Rodríguez
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| | - Padmavati Sahare
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM 3001, Juriquilla, Querétaro 76230, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, Manila 4031, Philippines
- Reliance Industries Ltd., Navi Mumbai 400701, India
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, P.O. Box 1046 Blindern, 0317 Oslo, Norway
| | - Sujay Paul
- School of Engineering and Sciences, Campus Querétaro, Tecnologico de Monterrey, Av. Epigmenio González, No. 500 Fracc. San Pablo, Querétaro 76130, Mexico
| |
Collapse
|
3
|
Chen P, Yang Z, Mai Z, Huang Z, Bian Y, Wu S, Dong X, Fu X, Ko F, Zhang S, Zheng W, Zhang S, Zhou W. Electrospun nanofibrous membrane with antibacterial and antiviral properties decorated with Myoporum bontioides extract and silver-doped carbon nitride nanoparticles for medical masks application. Sep Purif Technol 2022; 298:121565. [PMID: 35765307 PMCID: PMC9225951 DOI: 10.1016/j.seppur.2022.121565] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/03/2022] [Accepted: 06/20/2022] [Indexed: 12/29/2022]
Abstract
Public health safety issues have been plaguing the world since the pandemic outbreak of coronavirus disease (COVID-19). However, most personal protective equipments (PPE) do not have antibacterial and anti- toxicity effects. In this work, we designed and prepared a reusable, antibacterial and anti-toxicity Polyacrylonitrile (PAN) based nanofibrous membrane cooperated with Ag/g-C3N4 (Ag-CN), Myoporum.bontioides (M. bontioides) plant extracts and Ag nanoparticles (NPs) by an electrospinning-process. The SEM and TEM characterization revealed the formation of raised, creased or wrinkled areas on the fiber surface caused by the Ag nanoparticles, the rough surface prevented the aerosol particles on the fiber surface from sliding and stagnating, thus providing excellent filtration performance. The PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane could be employed as a photocatalytic bactericidal material, which not only degraded 96.37% of methylene blue within 150 min, but also exhibited the superior bactericidal effect of 98.65 ± 1.49% and 97.8 ± 1.27% against E. coli and S. aureus, respectively, under 3 hs of light exposure. After 3 cycles of sterilization experiments, the PAN/M. bontioides/Ag-CN/Ag nanofibrous membrane maintained an efficient sterilization effect. Molecular docking revealed that the compounds in M. bontioides extracts interacted with neo-coronavirus targets mainly on Mpro and RdRp proteins, and these compounds had the strongest docking energy with Mpro protein, the shortest docking radius, and more binding sites for key amino acids around the viral protein targets, which influenced the replication and transcription process of neo-coronavirus. The PAN/M.bontioides/Ag-CN/Ag nanofibrous membrane also performed significant inhibition of influenza A virus H3N2. The novel nanofiber membrane is expected to be applied to medical masks, which will improve human isolation and protection against viruses.
Collapse
Affiliation(s)
- Pinhong Chen
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Zhi Yang
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhuoxian Mai
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Ziyun Huang
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Yongshuang Bian
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shangjing Wu
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianming Dong
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Xianjun Fu
- Marine Traditional Chinese Medicine Research Center, Qingdao Academy of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Qingdao 266114, China
| | - Frank Ko
- Department of Materials Engineering, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Shiying Zhang
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, China
| | - Wenxu Zheng
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Shengsen Zhang
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
| | - Wuyi Zhou
- Key Laboratory of the Ministry of Bio-based Materials and Energy Education, South China Agricultural University, Guangzhou 510642, China
- Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
4
|
Ghaemmaghamian Z, Zarghami R, Walker G, O'Reilly E, Ziaee A. Stabilizing vaccines via drying: Quality by design considerations. Adv Drug Deliv Rev 2022; 187:114313. [PMID: 35597307 DOI: 10.1016/j.addr.2022.114313] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/26/2022] [Accepted: 04/26/2022] [Indexed: 12/12/2022]
Abstract
Pandemics and epidemics are continually challenging human beings' health and imposing major stresses on the societies particularly over the last few decades, when their frequency has increased significantly. Protecting humans from multiple diseases is best achieved through vaccination. However, vaccines thermal instability has always been a hurdle in their widespread application, especially in less developed countries. Furthermore, insufficient vaccine processing capacity is also a major challenge for global vaccination programs. Continuous drying of vaccine formulations is one of the potential solutions to these challenges. This review highlights the challenges on implementing the continuous drying techniques for drying vaccines. The conventional drying methods, emerging technologies and their adaptation by biopharmaceutical industry are investigated considering the patented technologies for drying of vaccines. Moreover, the current progress in applying Quality by Design (QbD) in each of the drying techniques considering the critical quality attributes (CQAs), critical process parameters (CPPs) are comprehensively reviewed. An expert advice is presented on the required actions to be taken within the biopharmaceutical industry to move towards continuous stabilization of vaccines in the realm of QbD.
Collapse
Affiliation(s)
- Zahra Ghaemmaghamian
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Gavin Walker
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Emmet O'Reilly
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - Ahmad Ziaee
- SSPC, The SFI Research Centre of Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick, Ireland.
| |
Collapse
|
5
|
Kotturi H, Lopez-Davis C, Nikfarjam S, Kedy C, Byrne M, Barot V, Khandaker M. Incorporation of Mycobacteriophage Fulbright into Polycaprolactone Electrospun Nanofiber Wound Dressing. Polymers (Basel) 2022; 14:1948. [PMID: 35631831 PMCID: PMC9143337 DOI: 10.3390/polym14101948] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/24/2022] [Accepted: 05/01/2022] [Indexed: 02/04/2023] Open
Abstract
The Genus Mycobacterium includes pathogens known to cause disease in mammals such as tuberculosis (Mycobacterium tuberculosis) and skin infections (M. abscessus). M. smegmatis is a model bacterium that can cause opportunistic infections in human tissues and, rarely, a respiratory disease. Due to the emergence of multidrug-resistant bacteria, phage therapy is potentially an alternative way of treating these bacterial infections. As bacteriophages are specific to their bacterial host, it ensures that the normal flora is unharmed. Fulbright is a mycobacteriophage that infects the host bacteria M. smegmatis. The main goal of this study is to incorporate Mycobacteriophage Fulbright into a polycaprolactone (PCL) nanofiber and test its antimicrobial effect against the host bacteria, M. smegmatis. Stability tests conducted over 7 days showed that the phage titer does not decrease when in contact with PCL, making it a promising vehicle for phage delivery. Antimicrobial assays showed that PCL_Fulbright effectively reduces bacterial concentration after 24 h of contact. In addition, when stored at -20 °C, the phage remains viable for up to eleven months in the fiber. Fulbright addition on the nanofibrous mats resulted in an increase in water uptake and decrease in the mechanical properties (strength and Young's modulus) of the membranes, indicating that the presence of phage Fulbright can greatly enhance the physical and mechanical properties of the PCL. Cytotoxicity assays showed that PCL_Fulbright is not cytotoxic to Balbc/3T3 mouse embryo fibroblast cell lines; thus, phage-incorporated PCL is a promising alternative to antibiotics in treating skin infections.
Collapse
Affiliation(s)
- Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Charmaine Lopez-Davis
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Sadegh Nikfarjam
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Cameron Kedy
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Micah Byrne
- Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA; (S.N.); (C.K.); (M.B.)
| | - Vishal Barot
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA;
| | - Morshed Khandaker
- Department of Engineering and Physics, University of Central Oklahoma, Edmond, OK 73034, USA;
| |
Collapse
|