1
|
Zhong K, Chen X, Zhang J, Jiang X, Zhang J, Huang M, Bi S, Ju C, Luo Y. Recent Advances in Oral Vaccines for Animals. Vet Sci 2024; 11:353. [PMID: 39195807 PMCID: PMC11360704 DOI: 10.3390/vetsci11080353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
Compared to traditional injected vaccines, oral vaccines offer significant advantages for the immunization of livestock and wildlife due to their ease of use, high compliance, improved safety, and potential to stimulate mucosal immune responses and induce systemic immunity against pathogens. This review provides an overview of the delivery methods for oral vaccines, and the factors that influence their immunogenicity. We also highlight the global progress and achievements in the development and use of oral vaccines for animals, shedding light on potential future applications in this field.
Collapse
Affiliation(s)
- Kaining Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xinting Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhao Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Xiaoyu Jiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Junhui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Minyi Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
| | - Shuilian Bi
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Chunmei Ju
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| | - Yongwen Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510640, China; (K.Z.); (X.C.); (J.Z.); (X.J.); (J.Z.); (M.H.)
- Key Laboratory of Animal Vaccine Development of the Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510640, China
| |
Collapse
|
2
|
Hu J, Che C, Zuo J, Niu X, Wang Z, Lian L, Jia Y, Zhang H, Zhang T, Yu F, Nawaz S, Han X. Effect of Antibiotics on the Colonization of Live Attenuated Salmonella Enteritidis Vaccine in Chickens. Front Vet Sci 2021; 8:784160. [PMID: 34926647 PMCID: PMC8671454 DOI: 10.3389/fvets.2021.784160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/03/2021] [Indexed: 12/19/2022] Open
Abstract
Salmonellosis, caused by Salmonella Enteritidis, is a prevalent zoonosis that has serious consequences for human health and the development of the poultry sector. The Salmonella Enteritis live vaccine (Sm24/Rif12/Ssq strain) is used to prevent Salmonella Enteritidis around the world. However, in some parts of the world, poultry flocks are frequently raised under intensive conditions, with significant amounts of antimicrobials to prevent and treat disease and to promote growth. To investigate whether antibiotic use influences the colonization of orally administered Salmonella live vaccines, 240 1-day-old specific pathogen-free chicks were randomly divided into 24 groups of 10 animals for this study. The different groups were treated with different antibiotics, which included ceftiofur, amoxicillin, enrofloxacin, and lincomycin–spectinomycin. Each group was immunized 2, 3, 4, and 5 days after withdrawal, respectively. At 5 days after immunization, the blood, liver, and ceca with contents were collected for the isolation of the Salmonella live vaccine strain. The result showed that no Salmonella vaccine strain was isolated in the blood and liver of the chicks in those groups. The highest number of Salmonella vaccine strains was isolated in the cecum from chicks vaccinated 2 days after ceftiofur withdrawal, and no Salmonella vaccine strain was isolated from the cecum in chicks immunized 3 days after ceftiofur withdrawal. Among the chickens immunized 4 days after the withdrawal of amoxicillin, enrofloxacin, and lincomycin–spectinomycin, the number of Salmonella vaccine colonization in the cecum was the highest, which was higher than that of the chickens immunized at other withdrawal interval (2, 3, and 5 days) groups and was higher than that of the chickens without treatment (P < 0.05). This study provides a reference for the effective use of the Salmonella Enteritidis live vaccine and key antibiotics commonly utilized in the poultry industry.
Collapse
Affiliation(s)
- Jiangang Hu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chuanyan Che
- College of Animal Science, Anhui Science and Technology University, Chuzhou, China
| | - Jiakun Zuo
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangpeng Niu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhihao Wang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Liyan Lian
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yuanzheng Jia
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Haiyang Zhang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Tao Zhang
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Fangheng Yu
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Saqib Nawaz
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, The Chinese Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
3
|
Acevedo-Villanueva KY, Akerele GO, Al Hakeem WG, Renu S, Shanmugasundaram R, Selvaraj RK. A Novel Approach against Salmonella: A Review of Polymeric Nanoparticle Vaccines for Broilers and Layers. Vaccines (Basel) 2021; 9:vaccines9091041. [PMID: 34579278 PMCID: PMC8470574 DOI: 10.3390/vaccines9091041] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
This work discusses the present-day limitations of current commercial Salmonella vaccines for broilers and layers and explores a novel approach towards poultry vaccination using biodegradable nanoparticle vaccines against Salmonella. With the increasing global population and poultry production and consumption, Salmonella is a potential health risk for humans. The oral administration of killed or inactivated vaccines would provide a better alternative to the currently commercially available Salmonella vaccines for poultry. However, there are currently no commercial oral killed-vaccines against Salmonella for use in broilers or layers. There is a need for novel and effective interventions in the poultry industry. Polymeric nanoparticles could give way to an effective mass-administered mucosal vaccination method for Salmonella. The scope of this work is limited to polymeric nanoparticles against Salmonella for use in broilers and layers. This review is based on the information available at the time of the investigation.
Collapse
Affiliation(s)
- Keila Y. Acevedo-Villanueva
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Gabriel O. Akerele
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Walid Ghazi Al Hakeem
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
| | - Sankar Renu
- Upkara Inc., 45145 W 12 Mile Rd, Novi, MI 48377, USA;
| | | | - Ramesh K. Selvaraj
- Department of Poultry Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA; (K.Y.A.-V.); (G.O.A.); (W.G.A.H.)
- Correspondence:
| |
Collapse
|