1
|
Cargnin Faccin F, Cáceres CJ, Gay LC, Seibert B, van Bentem N, Rodriguez LA, Soares Fraiha AL, Cardenas M, Geiger G, Ortiz L, Carnaccini S, Kapczynski DR, Rajao DS, Perez DR. Mass vaccination with reassortment-impaired live H9N2 avian influenza vaccine. NPJ Vaccines 2024; 9:136. [PMID: 39097573 PMCID: PMC11297921 DOI: 10.1038/s41541-024-00923-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Avian influenza poses a severe threat to poultry production and global food security, prompting the development of vaccination programs in numerous countries. Modified live virus (MLV) vaccines, with their potential for mass application, offer a distinct advantage over existing options. However, concerns surrounding reversion, recombination, and unintended transmission have hindered the progress of MLV development for avian influenza in poultry. To address these concerns, we engineered reassortment-impaired, non-transmissible, safe, immunogenic, and protective MLVs through the rearrangement of internal gene segments and additional modifications to the surface gene segments HA and NA. The unique peptide marker aspartic acid-arginine-proline-alanine-valine-isoleucine-alanine-asparragine (DRPAVIAN) was incorporated into HA, while NA was modified to encode the chicken interleukin-18 (ckIL18) gene (MLV-H9N2-IL). In vitro, the MLV-H9N2 and MLV-H9N2-IL candidates demonstrated stability and virus titers comparable to the wild-type H9N2 strain. In chickens, the MLV-H9N2 and MLV-H9N2-IL candidates did not transmit via direct contact. Co-infection studies with wild-type virus confirmed that the altered HA and NA segments exhibited fitness disadvantages and did not reassort. Vaccinated chickens showed no clinical signs upon vaccination, all seroconverted, and the inclusion of ckIL18 in the MLV-H9N2-IL vaccine enhanced neutralizing antibody production. A significant decrease in viral loads post-challenge underscored the protective effect of the MLVs. The MLV-H9N2-IL vaccine, administered via drinking water, proved immunogenic in chickens in a dose-dependent manner, generating protective levels of neutralizing antibodies upon aggressive homologous virus challenge. In summary, this study lays the groundwork for safe MLVs against avian influenza suitable for mass vaccination efforts.
Collapse
Affiliation(s)
- Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - C Joaquin Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nick van Bentem
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Division of Farm Animal Health, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Luis A Rodriguez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ana Luiza Soares Fraiha
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Departamento de Medicina Veterinária Preventiva, Universidade Federal de Minas Gerais, Belo, Horizonte, Minas Gerais, Brazil
| | - Matias Cardenas
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lucia Ortiz
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Silvia Carnaccini
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Darrell R Kapczynski
- Exotic and Emerging Avian Viral Disease Research Unit, Southeast Poultry Research Laboratory, U.S. National Poultry Research Center, Agricultural Research Service, USDA, Athens, GA, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
2
|
Cardenas-Garcia S, Cáceres CJ, Jain A, Geiger G, Mo JS, Gay LC, Seibert B, Jasinskas A, Nakajima R, Rajao DS, Davies DH, Perez DR. Impact of sex on humoral immunity with live influenza B virus vaccines in mice. NPJ Vaccines 2024; 9:45. [PMID: 38409236 PMCID: PMC10897209 DOI: 10.1038/s41541-024-00827-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
Influenza B virus (FLUBV) poses a significant infectious threat, with frequent vaccine mismatch limiting its effectiveness. Our previous work investigated the safety and efficacy of modified live attenuated FLUBV vaccines with rearranged genomes (FluB-RAM and FluB-RANS) or a temperature-sensitive PB1 segment with a C-terminal HA tag (FluB-att). In this study, we compared the immune responses of female and male DBA/2J mice vaccinated with these vaccines, including versions containing a chimeric HA segment with an N-terminal IgA-inducing peptide (IGIP). Importantly, both recombinant viruses with and without IGIP remained genetically stable during egg passage. We found that introducing IGIP strengthened vaccine attenuation, particularly for FluB-RAM/IGIP. Prime-boost vaccination completely protected mice against lethal challenge with a homologous FLUBV strain. Notably, recombinant viruses induced robust neutralizing antibody responses (hemagglutination inhibition titers ≥40) alongside antibodies against NA and NP. Interestingly, female mice displayed a consistent trend of enhanced humoral and cross-reactive IgG and IgA responses against HA, NA, and NP compared to male counterparts, regardless of the vaccine used. However, the presence of IGIP generally led to lower anti-HA responses but higher anti-NA and anti-NP responses, particularly of the IgA isotype. These trends were further reflected in mucosal and serological responses two weeks after challenge, with clear distinctions based on sex, vaccine backbone, and IGIP inclusion. These findings hold significant promise for advancing the development of universal influenza vaccines.
Collapse
Affiliation(s)
- Stivalis Cardenas-Garcia
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - C Joaquín Cáceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Aarti Jain
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Ginger Geiger
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Jong-Suk Mo
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Brittany Seibert
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Algimantas Jasinskas
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Daniela S Rajao
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - D Huw Davies
- Department of Physiology and Biophysics, School of Medicine, University of California Irvine, Irvine, CA, 92697, USA
| | - Daniel R Perez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
3
|
Caceres CJ, Gay LC, Faccin FC, Pérez DR. Use of Reverse Genetics for the Generation of Recombinant Influenza Viruses Carrying Nanoluciferase. Methods Mol Biol 2024; 2733:47-74. [PMID: 38064026 DOI: 10.1007/978-1-0716-3533-9_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Influenza A (FLUAV) and influenza B (FLUBV) viruses are human and/or animal pathogens widely studied due to their importance to public health and animal production. Both FLUAV and FLUBV possess a genome composed of eight viral gene segments. For reverse genetics of influenza viruses, transcription of the mRNA for the viral proteins is typically done from a plasmid encoding an RNA polymerase II (pol II) promoter element upstream of cloned viral cDNA and expressed like host mRNA. On the other side, the synthesis of the negative-sense, single-stranded, uncapped vRNAs can be accomplished by the host's RNA polymerase I (pol I). The reverse genetics for influenza has allowed the manipulation of influenza genomes incorporating heterogeneous sequences into different segments of the influenza genome, such as reporter genes. In this chapter, we outline the protocol from the generation of reverse genetic plasmid that can be applied for the cloning of any of the segments of FLUAV or FLUBV. Furthermore, we describe a protocol for generating FLUAV or FLUBV recombinant viruses carrying Nanoluciferase (NLuc) in the PB1 gene using reverse genetics. Finally, we delineate a microneutralization protocol using FLUAV-NLuc or FLUBV-NLuc viruses optimized for the use of antibodies from different sources (mice, ferrets, avian, etc.), which provides a more sensitive, reliable, and avidity-independent method to assess the presence of neutralizing antibodies against FLUAV or FLUBV.
Collapse
Affiliation(s)
- C Joaquin Caceres
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - L Claire Gay
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Flavio Cargnin Faccin
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Daniel R Pérez
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|