1
|
Alkader MS, Altaha RZ, Jabali EH, Attieh OA, Matalqa AW. Is there an association between lymph node size and hyperprogression in immunotherapy-treated patients? ROMANIAN JOURNAL OF INTERNAL MEDICINE = REVUE ROUMAINE DE MEDECINE INTERNE 2024; 62:33-43. [PMID: 37882575 DOI: 10.2478/rjim-2023-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Hyperprogressive disease (HPD) can be described as an accelerated increase in the growth rate of tumors combined with rapid clinical deterioration observed in a subset of cancer patients undergoing immunotherapy, specifically with immune checkpoint inhibitors (ICIs). The reported incidence of HPD ranges from 5.9% to 43.1% in patients receiving ICIs. In this context, identifying reliable predictive risk factors for HPD is crucial as it may allow for earlier intervention and ultimately improve patient outcomes. METHODS This study retrospectively analyzed ten metastatic renal cell carcinoma (mRCC) patients. The identification of HPD was based on the diagnostic criteria proposed by Ferrara R et al. This study aimed to investigate whether there is an association between LN size and HPD using a cutoff value of 3 cm for LN size. Given the limited sample size, Fisher's exact test was used to test this association. We conducted a Kaplan-Meier (KM) analysis to estimate the median overall survival (OS) of patients with HPD and compared it to those without HPD. RESULTS Three patients (30%) developed HPD, while seven (70%) did not. Fisher's exact test revealed a statistically significant association between the HPD and LN size ≥ 3 cm (p=0.008). In the HPD group, the median OS was significantly shorter, with a median OS of 3 months, whereas in the non-HPD group, the median OS was not reached (P =0.001). CONCLUSION The present study found a significant association between LN size ≥ 3 cm in the pretreatment period and HPD development.
Collapse
Affiliation(s)
- Mohammad S Alkader
- Department of Clinical Oncology, Military Cancer Center, Royal Medical Services, Amman, Jordan
| | - Rashed Z Altaha
- Department of Internal Medicine, Military Cancer Center, Royal Medical Services, Amman, Jordan
| | - Eslam H Jabali
- Department of nuclear medicine, Royal Medical Services, Amman, Jordan
| | - Ola A Attieh
- Department of nuclear medicine, Royal Medical Services, Amman, Jordan
| | - Ala' W Matalqa
- Department of Internal Medicine, Military Cancer Center, Royal Medical Services, Amman, Jordan
| |
Collapse
|
2
|
Fujita K, Kimura G, Tsuzuki T, Kato T, Banno E, Kazama A, Yamashita R, Matsushita Y, Ishii D, Fukawa T, Nakagawa Y, Fukuyama T, Sano F, Kondo Y, Uemura H. The Association of Tumor Immune Microenvironment of the Primary Lesion with Time to Metastasis in Patients with Renal Cell Carcinoma: A Retrospective Analysis. Cancers (Basel) 2022; 14:5258. [PMID: 36358675 PMCID: PMC9656369 DOI: 10.3390/cancers14215258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/21/2022] [Accepted: 10/24/2022] [Indexed: 09/14/2024] Open
Abstract
Biological or immunological differences in primary lesions between synchronous and metachronous metastatic renal cell carcinoma (mRCC) have been reported. However, the association between the tumor immune microenvironment (TIME) of primary lesions and time to metastasis remains unknown. We investigated the differences in the TIME of primary lesions based on time intervals to metastasis, mainly between the synchronous group (SG; metastasis within 3 months) and metachronous group (MG; metastasis after 3 months), and its association with clinicopathological parameters in patients with mRCC. Overall, 568 patients treated first-line with vascular endothelial growth factor receptor inhibitors comprised the analysis population (SG: N = 307 [54.0%]; MG: N = 261 [46.0%]). SG had a higher proportion of patients with poor prognostic pathological feature tumors: WHO/ISUP grade 4, necrosis, lymphovascular invasion, infiltrative growth pattern, and sarcomatoid differentiation. Regarding the TIME, more immunogenic features were seen in SG than MG, with a higher PD-L1 positivity and a lower proportion of the desert phenotype. This is the first study to examine the differences in the TIME of primary lesions in patients with mRCC based on the time intervals to metastasis. The TIME of primary lesions could affect the time to metastasis.
Collapse
Affiliation(s)
- Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Go Kimura
- Department of Urology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Toyonori Tsuzuki
- Department of Surgical Pathology, Aichi Medical University Hospital, Nagakute 480-1195, Japan
| | - Taigo Kato
- Department of Urology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Eri Banno
- Department of Urology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| | - Akira Kazama
- Department of Urology, Division of Molecular Oncology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan
| | - Ryo Yamashita
- Division of Urology, Shizuoka Cancer Center, Shizuoka 411-8777, Japan
| | - Yuto Matsushita
- Department of Urology, Hamamatsu University School of Medicine, Hamamatsu 431-3192, Japan
| | - Daisuke Ishii
- Department of Urology, Kitasato University of Medicine, Sagamihara 252-0374, Japan
| | - Tomoya Fukawa
- Department of Urology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Yuki Nakagawa
- Clinical Development Division, Chugai Pharmaceutical Co., Ltd., Tokyo 103-8324, Japan
| | - Tamaki Fukuyama
- Medical Affairs Division, Chugai Pharmaceutical Co., Ltd., Tokyo 103-8324, Japan
| | - Fumikazu Sano
- Medical Affairs Division, Chugai Pharmaceutical Co., Ltd., Tokyo 103-8324, Japan
| | - Yukihiro Kondo
- Department of Urology, Nippon Medical School, Tokyo 113-8603, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka 589-8511, Japan
| |
Collapse
|
3
|
Alkader M, Altaha R, Alkhatib L, Jabali EH, Alsoreeky MS. Hyperprogressive Disease In a Metastatic Renal Cell Carcinoma Patient After Receiving Immune Checkpoint Inhibitors: A Case Report. Cureus 2022; 14:e30194. [DOI: 10.7759/cureus.30194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2022] [Indexed: 11/07/2022] Open
|
4
|
Zhang G, Chen X, Fang J, Tai P, Chen A, Cao K. Cuproptosis status affects treatment options about immunotherapy and targeted therapy for patients with kidney renal clear cell carcinoma. Front Immunol 2022; 13:954440. [PMID: 36059510 PMCID: PMC9437301 DOI: 10.3389/fimmu.2022.954440] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/05/2022] [Indexed: 01/10/2023] Open
Abstract
The development of immunotherapy has changed the treatment landscape of advanced kidney renal clear cell carcinoma (KIRC), offering patients more treatment options. Cuproptosis, a novel cell death mode dependent on copper ions and mitochondrial respiration has not yet been studied in KIRC. We assembled a comprehensive cohort of The Cancer Genome Atlas (TCGA)-KIRC and GSE29609, performed cluster analysis for typing twice using seven cuproptosis-promoting genes (CPGs) as a starting point, and assessed the differences in biological and clinicopathological characteristics between different subtypes. Furthermore, we explored the tumor immune infiltration landscape in KIRC using ESTIMATE and single-sample gene set enrichment analysis (ssGSEA) and the potential molecular mechanisms of cuproptosis in KIRC using enrichment analysis. We constructed a cuproptosis score (CUS) using the Boruta algorithm combined with principal component analysis. We evaluated the impact of CUS on prognosis, targeted therapy, and immunotherapy in patients with KIRC using survival analysis, the predictions from the Cancer Immunome Atlas database, and targeted drug susceptibility analysis. We found that patients with high CUS levels show poor prognosis and efficacy against all four immune checkpoint inhibitors, and their immunosuppression may depend on TGFB1. However, the high-CUS group showed higher sensitivity to sunitinib, axitinib, and elesclomol. Sunitinib monotherapy may reverse the poor prognosis and result in higher progression free survival. Then, we identified two potential CPGs and verified their differential expression between the KIRC and the normal samples. Finally, we explored the effect of the key gene FDX1 on the proliferation of KIRC cells and confirmed the presence of cuproptosis in KIRC cells. We developed a targeted therapy and immunotherapy strategy for advanced KIRC based on CUS. Our findings provide new insights into the relationship among cuproptosis, metabolism, and immunity in KIRC.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Cao
- *Correspondence: Ke Cao, ;
| |
Collapse
|
5
|
Liu J, Xu J, Zhang T, Xu K, Bao P, Zhang Z, Xue K, He R, Ma L, Wang Y. Decoding the Immune Microenvironment of Clear Cell Renal Cell Carcinoma by Single-Cell Profiling to Aid Immunotherapy. Front Immunol 2022; 13:791158. [PMID: 35812372 PMCID: PMC9263726 DOI: 10.3389/fimmu.2022.791158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer, and it is the major cause of kidney cancer death. Understanding tumor immune microenvironments (TMEs) is critical in cancer immunotherapies. Here, we studied the immune characterization at single-cell resolution by integrating public data of ccRCC across different tissue types, and comparing the transcriptome features and tumor TME differences in tumors, normal adjacent tissue, and peripheral blood. A total of 16 different types of cell components of ccRCC were identified. We revealed that there is an overall increase in T-cell and myeloid populations in tumor-infiltrated immune cells compared to normal renal tissue, and the B-cell population in the tumor showed a sharp decrease, which indicates that the cells in tumor tissue undergo strong immune stress. In addition, the cell-cell communication analysis revealed specific or conserved signals in different tissue types, which may aid to uncover the distinct immune response. By combining and analyzing publicly available ccRCC bulk RNA-seq datasets, 10 genes were identified as marker genes in specific cell types, which were significantly associated with poor prognosis. Of note, UBE2C, which may be a good indicator of tumor proliferation, is positively associated with reductions in overall survival and highly associated with tumor grade. Our integrated analysis provides single-cell transcriptomic profiling of ccRCC and their TME, and it unmasked new correlations between gene expression, survival outcomes, and immune cell-type components, enabling us to dissect the dynamic variables in the tumor development process. This resource provides deeper insight into the transcriptome features and immune response of ccRCC and will be helpful in kidney cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jiangfan Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Tong Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Kailong Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Peihua Bao
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, China
| | - Zhibo Zhang
- Department of Cardiothoracic Surgery, The 78th Group Army Hospital of Chinese People's Liberation Army, Mudanjiang, China
| | - Kaiwen Xue
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan, China
| | - Ruyi He
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Lixin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Yang Wang, ; Lixin Ma,
| | - Yang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China,*Correspondence: Yang Wang, ; Lixin Ma,
| |
Collapse
|
6
|
Zhuang TZ, Case K, Olsen TA, Brown JT, Carthon BC, Kucuk O, Goldman J, Harris W, Bilen MA, Nazha B. Metastatic Clear-Cell Renal Cell Carcinoma in the Era of Immune Checkpoint Inhibitors: Therapies and Ongoing Trials. Cancers (Basel) 2022; 14:2867. [PMID: 35740533 PMCID: PMC9220801 DOI: 10.3390/cancers14122867] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) are now the bedrock for the treatment of metastatic renal cell carcinoma (RCC). Clear cell RCC (ccRCC) represents the most common subtype of this malignancy. Herein, we explore the therapeutic landscape of ccRCC by discussing the standard of care whose backbone consists of immune checkpoint inhibitors (ICI) and vascular endothelial growth factor inhibitors (VEGF). For ccRCC, pembrolizumab-axitinib, pembrolizumab-lenvatinib, and avelumab-axitinib or nivolumab-cabozantinib are now FDA-approved frontline options for all risk groups while nivolumab-ipilimumab is reserved for intermediate- and poor-risk groups. Monotherapy with pembrolizumab or nivolumab is a potential option for patients who are unable to take VEGFR-tyrosine kinase inhibitors. While outcomes have improved with the adoption of ICI therapies, many patients develop therapy-resistant disease, creating an unmet need for further investigation. The efficacy of novel therapies as well as novel combinations in the post-ICI era is unclear. This review summarizes the most significant clinical trials involving dual ICI/ICI and ICI/VEGFR therapies, in addition to other selected combination therapies that are likely to inform management in the near future.
Collapse
Affiliation(s)
- Tony Zibo Zhuang
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (T.Z.Z.); (K.C.); (T.A.O.)
| | - Katherine Case
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (T.Z.Z.); (K.C.); (T.A.O.)
| | - Timothy Anders Olsen
- School of Medicine, Emory University, Atlanta, GA 30322, USA; (T.Z.Z.); (K.C.); (T.A.O.)
| | - Jacqueline T. Brown
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bradley C. Carthon
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Omer Kucuk
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jamie Goldman
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Wayne Harris
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Mehmet Asim Bilen
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bassel Nazha
- Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA; (J.T.B.); (B.C.C.); (O.K.); (J.G.); (W.H.); (M.A.B.)
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Immunotherapy in Genitourinary Malignancy: Evolution in Revolution or Revolution in Evolution. Cancer Treat Res 2022; 183:201-223. [PMID: 35551661 DOI: 10.1007/978-3-030-96376-7_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Immunotherapy, the 5th pillar of cancer care after surgery, radiotherapy, cytotoxic chemotherapy, and precision therapy (molecular targeted therapy), is revolutionizing the standard of care in certain patients with genitourinary malignancies. As modest clinical benefits of IL-2 for metastatic renal cell carcinoma and Bacillus Calmette-Guerin therapy for early-stage bladder cancers in the past years, immune checkpoint inhibitors therapies demonstrate meaningful survival benefit and durable clinical response in renal cell carcinoma, urothelial carcinoma, and some prostate cancer. Despite best efforts, the benefits are limited to a minority of unselected patients due to the complexities of biomarker development. Now come the next hurdles: figuring out which patients best respond to immune checkpoint inhibitors and which patients won't respond to immune checkpoint inhibitors? How best to approach immune checkpoint inhibitors therapies to extend/maximize the treatment response as long as possible? How to overcome therapeutic resistance by specific concurrent immunomodulators or targeted therapy or chemotherapy? The role of immune checkpoint inhibitors in combination or sequencing with chemotherapy or other targeted therapies or other immunomodulating therapeutics in the early disease, neoadjuvant, adjuvant, and metastatic setting is actively under exploration. Ideal strategy for cancer care is to provide not just more time, but more quality time: there remain unmet needs for novel therapies that exploit molecular or genetic pathways to extend survival without compromising health-related quality of life for patients with advanced genitourinary malignancies. Further research is needed to discover new therapeutic strategies, and validate efficacy and effectiveness in real-world settings.
Collapse
|
8
|
Ferraguti G, Terracina S, Petrella C, Greco A, Minni A, Lucarelli M, Agostinelli E, Ralli M, de Vincentiis M, Raponi G, Polimeni A, Ceccanti M, Caronti B, Di Certo MG, Barbato C, Mattia A, Tarani L, Fiore M. Alcohol and Head and Neck Cancer: Updates on the Role of Oxidative Stress, Genetic, Epigenetics, Oral Microbiota, Antioxidants, and Alkylating Agents. Antioxidants (Basel) 2022; 11:145. [PMID: 35052649 PMCID: PMC8773066 DOI: 10.3390/antiox11010145] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Head and neck cancer (HNC) concerns more than 890,000 patients worldwide annually and is associated with the advanced stage at presentation and heavy outcomes. Alcohol drinking, together with tobacco smoking, and human papillomavirus infection are the main recognized risk factors. The tumorigenesis of HNC represents an intricate sequential process that implicates a gradual acquisition of genetic and epigenetics alterations targeting crucial pathways regulating cell growth, motility, and stromal interactions. Tumor microenvironment and growth factors also play a major role in HNC. Alcohol toxicity is caused both directly by ethanol and indirectly by its metabolic products, with the involvement of the oral microbiota and oxidative stress; alcohol might enhance the exposure of epithelial cells to carcinogens, causing epigenetic modifications, DNA damage, and inaccurate DNA repair with the formation of DNA adducts. Long-term markers of alcohol consumption, especially those detected in the hair, may provide crucial information on the real alcohol drinking of HNC patients. Strategies for prevention could include food supplements as polyphenols, and alkylating drugs as therapy that play a key role in HNC management. Indeed, polyphenols throughout their antioxidant and anti-inflammatory actions may counteract or limit the toxic effect of alcohol whereas alkylating agents inhibiting cancer cells' growth could reduce the carcinogenic damage induced by alcohol. Despite the established association between alcohol and HNC, a concerning pattern of alcohol consumption in survivors of HNC has been shown. It is of primary importance to increase the awareness of cancer risks associated with alcohol consumption, both in oncologic patients and the general population, to provide advice for reducing HNC prevalence and complications.
Collapse
Affiliation(s)
- Giampiero Ferraguti
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Sergio Terracina
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco Lucarelli
- Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy; (G.F.); (S.T.); (M.L.)
| | - Enzo Agostinelli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Massimo Ralli
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy; (A.G.); (A.M.); (E.A.); (M.R.); (M.d.V.)
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo, 00184 Rome, Italy;
- SIFASD, Società Italiana Sindrome Feto-Alcolica, 00184 Rome, Italy
| | - Brunella Caronti
- Department of Human Neurosciences, Sapienza University of Rome, 00185 Rome, Italy;
| | - Maria Grazia Di Certo
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Christian Barbato
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| | - Alessandro Mattia
- Ministero dell’Interno, Dipartimento della Pubblica Sicurezza, Direzione Centrale di Sanità, Centro di Ricerche e Laboratorio di Tossicologia Forense, 00185 Rome, Italy;
| | - Luigi Tarani
- Department of Pediatrics, Sapienza University Hospital of Rome, 00185 Rome, Italy;
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology, IBBC—CNR, 000185 Rome, Italy; (C.P.); (M.G.D.C.); (C.B.)
| |
Collapse
|
9
|
Fu S, Gong B, Wang S, Chen Q, Liu Y, Zhuang C, Li Z, Zhang Z, Ma M, Sun T. Prognostic Value of Long Noncoding RNA DLEU2 and Its Relationship with Immune Infiltration in Kidney Renal Clear Cell Carcinoma and Liver Hepatocellular Carcinoma. Int J Gen Med 2021; 14:8047-8064. [PMID: 34795513 PMCID: PMC8593347 DOI: 10.2147/ijgm.s336428] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background DLEU2 is a long noncoding RNA considered important in the progression of many cancers. However, correlations between DLEU2 and kidney renal clear cell carcinoma (KIRC) and liver hepatocellular carcinoma (LIHC) have rarely been reported. Methods We first analysed the expression of DLEU2 across cancers and the correlation between DLEU2 and the clinical features of KIRC and LIHC by using the “ggplot2” package in R and searched the Oncomine database and Timer website platform. We verified the expression of DLEU2 in the GEO dataset (GSE105261 and GSE45267). Receiver operating characteristic (ROC) curves were drawn using the “pROC” and “ggplot2” packages in R, and we constructed a DLEU2-based prognostic nomogram for KIRC and LIHC by using the “survival” and “rms” packages in R. Then, we analysed the correlation between DLEU2 expression and prognosis in R as well as the correlation between DLEU2 and immune cell infiltration in the TIMER database. Finally, we explored the causes of DLEU2 upregulation in the UCSC Xena and UALCAN databases. Results We found that DLEU2 was upregulated in many cancers, including KIRC and LIHC. Expression of DLEU2 is associated with tumour stage, grade, lymphatic metastasis, and distant metastasis in KIRC as well as alpha-fetoprotein (AFP), tumour stage, grade, lymphatic metastasis, and distant metastasis in LIHC. DLEU2 is an adverse factor for the prognosis of KIRC and LIHC. In addition, DLEU2 has moderate accuracy in diagnosing KIRC and LIHC and predicting their prognosis. Moreover, we found that expression of DLEU2 correlated positively with immune cell infiltration in KIRC and LIHC, and upregulation of DLEU2 in KIRC and LIHC suggests a poor prognosis based on immune cells analysis. Genetic and epigenetic analyses of DLEU2 indicate that copy number variations (CNVs) and methylation contribute to the upregulation of DLEU2. Conclusion The long noncoding RNA DLEU2 has the potential to predict the prognosis and immune infiltration of KIRC and LIHC.
Collapse
Affiliation(s)
- Shengqiang Fu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Binbin Gong
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Siyuan Wang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Qiang Chen
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Yifu Liu
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Changshui Zhuang
- Department of Urology, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, People's Republic of China
| | - Zhilong Li
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Zhicheng Zhang
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ming Ma
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| | - Ting Sun
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|