1
|
Fiers J, Maes D, Cay AB, Mostin L, Parys A, Tignon M. PRRSV-Vaccinated, Seronegative Sows and Maternally Derived Antibodies (I): Impact on PRRSV-1 Challenge Outcomes in Piglets. Vaccines (Basel) 2023; 11:1745. [PMID: 38140150 PMCID: PMC10748110 DOI: 10.3390/vaccines11121745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) remains an infectious agent with high importance in the swine industry. In this study, the influence of maternally derived antibodies (MDAs) on an experimental PRRSV-1 challenge is investigated. Piglets included in the study (n = 36) originated from a Belgian farrow-to-finish herd in which the sow population was routinely vaccinated with a modified live vaccine against PRRSV. Eighteen piglets were born from three PRRSV-seropositive sows (responders to vaccination) and had a clear presence of PRRSV-specific MDAs (E+ piglets). The other eighteen piglets were born from three PRRSV-seronegative sows (non-responders to vaccination) and did not have PRRSV-specific MDAs (E- piglets). In each group, twelve piglets were intranasally challenged with a high dose of the heterologous PRRSV-1 07V063 strain, the remaining piglets were mock-challenged (PBS) and served as controls. During the first days after infection, higher serum viremia and nasal shedding were observed in the challenged E- piglets compared to the challenged E+ piglets. However, at 10 days post-infection, the peak serum viremia was significantly higher in the E+ piglets in comparison to the E- piglets and serum viremia remained slightly higher in this group until the end of the study. Additionally, the two challenged groups had a different immune response to the PRRSV infection. The E- challenged piglets showed an earlier and more intense seroconversion, leading to significantly higher antibody titers at 10 dpi compared to the E+ challenged piglets. Furthermore, a trend towards both higher induction of serum IFN-γ and higher induction of IFN-γ secreting cells was observed in the E- challenged piglets. In contrast, a significantly higher induction of serum TNF-α at 7 dpi was seen in the E+ challenged piglets compared to the E- challenged piglets. The results gathered in this study suggest that PRRSV-specific MDAs induce partial protection during the early stages of infection but are not sufficient to protect against a high challenge dose. The presence of piglets lacking PRRSV-specific MDAs might pose a risk for PRRSV infection and enhanced transmission in pig farms in young piglets.
Collapse
Affiliation(s)
- Jorian Fiers
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Dominiek Maes
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Ann-Brigitte Cay
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
- Unit of Porcine Health Management, Department of Reproduction, Obstetrics and Herd Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium;
| | - Laurent Mostin
- Unit Experimental Centre, Department Infectious Diseases in Animals, Sciensano, Kerklaan 68, 1830 Machelen, Belgium
| | - Anna Parys
- Unit Experimental Centre, Department Infectious Diseases in Animals, Sciensano, Kerklaan 68, 1830 Machelen, Belgium
| | - Marylène Tignon
- Unit Viral Re-Emerging, Enzootic and Bee Diseases, Department Infectious Diseases in Animals, Sciensano, Groeselenbergstraat 99, 1180 Ukkel, Belgium
| |
Collapse
|
2
|
Pedersen K, Blirup-Plum SA, Kristensen CS, Kvisgaard LK, Skade L, Jensen HE, Larsen LE. Virological and Histopathological Findings in Boars Naturally Infected With Porcine Reproductive and Respiratory Syndrome Virus Type 1. Front Microbiol 2022; 13:874498. [PMID: 35633676 PMCID: PMC9130840 DOI: 10.3389/fmicb.2022.874498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Major geographical transmission of porcine reproductive and respiratory syndrome virus (PRRSV) occurs via semen when a boar stud is infected. This happened in Denmark in 2019, providing an opportunity to compare previous experimental PRRSV boar studies with natural PRRSV-1 infection in boars. The aim of this study was to investigate the association between the presence of PRRSV RNA in serum, semen, testicles, and epididymis of boars naturally infected with PRRSV and to describe the histological lesions in the testes and epididymis combined with direct visualisation of PRRSV-infected cells by immunohistochemical staining (IHC). The exact timing of infection of each boar was not determined, but based on serology the boars were divided into two groups: acute and late infections. All boars included were sampled the same day. In this study, 35 boars and 10 healthy boars from another PRRSV-negative boar stud were included as histological controls. PRRSV RNA was found most often in serum (51%) and least frequently in semen (22%) and was more often detected in the reproductive tract in the acute phase of infection (p < 0.0001; RR: 2.58). Mononuclear cells and multinuclear giant cells were present in the adluminal compartment of the testis and epididymis in PRRSV-infected boars, but not in control boars (p < 0.05), which supports the hypothesis that macrophages are involved in the venereal spread of the virus.
Collapse
Affiliation(s)
- Kasper Pedersen
- SEGES Danish Pig Research Centre, Aarhus, Denmark.,Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lise Kirstine Kvisgaard
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lotte Skade
- SEGES Danish Pig Research Centre, Aarhus, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Lars Erik Larsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|