1
|
Nath A. Neurologic Complications With Vaccines: What We Know, What We Don't, and What We Should Do. Neurology 2023; 101:621-626. [PMID: 37185124 PMCID: PMC10573146 DOI: 10.1212/wnl.0000000000207337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 03/09/2023] [Indexed: 05/17/2023] Open
Abstract
Over the previous half century, vaccines have shaped human life by eradicating or nearly eradicating infections that were once a major cause of morbidity and mortality. The number of infections for which vaccines are now available has steadily increased. The types of vaccines have evolved over the years from crude extracts to more refined messenger RNA or protein-based vaccines. With these well-defined manufacturing processes, the safety profile has also improved. Despite such measures, vaccines are not without side effects, including those that affect the nervous system. Numerous case reports and case series point to these possibilities. These issues have gathered much attention during the current mass vaccination against severe acute respiratory syndrome coronavirus 2 and have resulted in some members of the public raising concerns about vaccine safety. The vaccine manufacturers have legal protection against vaccine side effects; however, there are active and passive surveillance programs put in place by the Center for Disease Control and Prevention, the US Food and Drug Administration, the World Health Organization, and the European Union. Action is needed that brings together manufactures, healthcare agencies, clinical and bench scientists, and legislatures on a global platform to investigate vaccine-related neurologic adverse events and develop ways to prevent and treat them.
Collapse
Affiliation(s)
- Avindra Nath
- From the National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD.
| |
Collapse
|
2
|
Chavda VP, Bezbaruah R, Valu D, Patel B, Kumar A, Prasad S, Kakoti BB, Kaushik A, Jesawadawala M. Adenoviral Vector-Based Vaccine Platform for COVID-19: Current Status. Vaccines (Basel) 2023; 11:432. [PMID: 36851309 PMCID: PMC9965371 DOI: 10.3390/vaccines11020432] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/16/2023] Open
Abstract
The coronavirus disease (COVID-19) breakout had an unimaginable worldwide effect in the 21st century, claiming millions of lives and putting a huge burden on the global economy. The potential developments in vaccine technologies following the determination of the genetic sequence of SARS-CoV-2 and the increasing global efforts to bring potential vaccines and therapeutics into the market for emergency use have provided a small bright spot to this tragic event. Several intriguing vaccine candidates have been developed using recombinant technology, genetic engineering, and other vaccine development technologies. In the last decade, a vast amount of the vaccine development process has diversified towards the usage of viral vector-based vaccines. The immune response elicited by such vaccines is comparatively higher than other approved vaccine candidates that require a booster dose to provide sufficient immune protection. The non-replicating adenoviral vectors are promising vaccine carriers for infectious diseases due to better yield, cGMP-friendly manufacturing processes, safety, better efficacy, manageable shipping, and storage procedures. As of April 2022, the WHO has approved a total of 10 vaccines around the world for COVID-19 (33 vaccines approved by at least one country), among which three candidates are adenoviral vector-based vaccines. This review sheds light on the developmental summary of all the adenoviral vector-based vaccines that are under emergency use authorization (EUA) or in the different stages of development for COVID-19 management.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Rajashri Bezbaruah
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Disha Valu
- Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bindra Patel
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Anup Kumar
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| | - Sanjay Prasad
- Cell and Gene Therapy Drug Product Development Laboratory, Biopharma Division, Intas Pharmaceutical Ltd., Moraiya, Ahmedabad 382213, Gujarat, India
| | - Bibhuti Bhusan Kakoti
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805-8531, USA
| | - Mariya Jesawadawala
- Pharmacy Section, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India
| |
Collapse
|
3
|
THEME: "Vaccines and Vaccine Adjuvants/Immunomodulators for Infectious Diseases". Vaccines (Basel) 2023; 11:vaccines11020383. [PMID: 36851261 PMCID: PMC9965514 DOI: 10.3390/vaccines11020383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 02/11/2023] Open
Abstract
The discovery of vaccines has enabled the successful prevention of many deadly infectious diseases, decreased the overall mortality rate, and improved life expectancy worldwide [...].
Collapse
|
4
|
Developing a Feline Immunodeficiency Virus Subtype B Vaccine Prototype Using a Recombinant MVA Vector. Vaccines (Basel) 2022; 10:vaccines10101717. [PMID: 36298582 PMCID: PMC9611692 DOI: 10.3390/vaccines10101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
The feline immunodeficiency virus (FIV) is a retrovirus with global impact and distribution, affecting both domestic and wild cats. This virus can cause severe and progressive immunosuppression culminating in the death of felids. Since the discovery of FIV, only one vaccine has been commercially available. This vaccine has proven efficiency against FIV subtypes A and D, whereas subtype B (FIV-B), found in multiple continents, is not currently preventable by vaccination. We, therefore, developed and evaluated a vaccine prototype against FIV-B using the recombinant viral vector modified vaccinia virus Ankara (MVA) expressing the variable region V1-V3 of the FIV-B envelope protein. We conducted preclinical tests in immunized mice (C57BL/6) using a prime-boost protocol with a 21 day interval and evaluated cellular and humoral responses as well the vaccine viability after lyophilization and storage. The animals immunized with the recombinant MVA/FIV virus developed specific splenocyte proliferation when stimulated with designed peptides. We also detected cellular and humoral immunity activation with IFN-y and antibody production. The data obtained in this study support further development of this immunogen and testing in cats.
Collapse
|
5
|
Muñoz-Valle JF, Sánchez-Zuno GA, Matuz-Flores MG, Hernández-Ramírez CO, Díaz-Pérez SA, Baños-Hernández CJ, Turrubiates-Hernández FJ, Vega-Magaña AN, Hernández-Bello J. Efficacy and Safety of Heterologous Booster Vaccination after Ad5-nCoV (CanSino Biologics) Vaccine: A Preliminary Descriptive Study. Vaccines (Basel) 2022; 10:vaccines10030400. [PMID: 35335032 PMCID: PMC8954152 DOI: 10.3390/vaccines10030400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 12/10/2022] Open
Abstract
Several studies have reported the benefits and safety of heterologous vaccination among different approved vaccines; however, there are no specific reports on the effects of vaccination with the Ad5-nCoV and other vaccines of the same or different technologies. In the present study, we evaluated the neutralizing antibodies percentage against SARS-CoV-2 in Mexican patients immunized with the Ad5-nCoV vaccine six months after its application. Moreover, the effect of the heterologous vaccination with the Ad5-nCoV vaccine and a booster dose of ChAdOx1-S-Nov-19, Ad26.COV2.S, BNT162b2, or mRNA-127 were determined. Our results suggest that a heterologous regimen of one dose with Ad5-nCoV vaccine followed by a booster dose of a different vaccine is safe and induces a stronger humoral immune response.
Collapse
|
6
|
Keresztes G, Baer M, Alfenito MR, Verwoerd TC, Kovalchuk A, Wiebe MG, Andersen TK, Saloheimo M, Tchelet R, Kensinger R, Grødeland G, Emalfarb M. The Highly Productive Thermothelomyces heterothallica C1 Expression System as a Host for Rapid Development of Influenza Vaccines. Vaccines (Basel) 2022; 10:vaccines10020148. [PMID: 35214607 PMCID: PMC8877961 DOI: 10.3390/vaccines10020148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 01/27/2023] Open
Abstract
(1) Influenza viruses constantly change and evade prior immune responses, forcing seasonal re-vaccinations with updated vaccines. Current FDA-approved vaccine manufacturing technologies are too slow and/or expensive to quickly adapt to mid-season changes in the virus or to the emergence of pandemic strains. Therefore, cost-effective vaccine technologies that can quickly adapt to newly emerged strains are desirable. (2) The filamentous fungal host Thermothelomyces heterothallica C1 (C1, formerly Myceliophthora thermophila) offers a highly efficient and cost-effective alternative to reliably produce immunogens of vaccine quality at large scale. (3) We showed the utility of the C1 system expressing hemagglutinin (HA) and a HA fusion protein from different H1N1 influenza A virus strains. Mice vaccinated with the C1-derived HA proteins elicited anti-HA immune responses similar, or stronger than mice vaccinated with HA products derived from prototypical expression systems. A challenge study demonstrated that vaccinated mice were protected against the aggressive homologous viral challenge. (4) The C1 expression system is proposed as part of a set of protein expression systems for plug-and-play vaccine manufacturing platforms. Upon the emergence of pathogens of concern these platforms could serve as a quick solution for producing enough vaccines for immunizing the world population in a much shorter time and more affordably than is possible with current platforms.
Collapse
Affiliation(s)
- Gabor Keresztes
- Dyadic International Inc., 140 Intracoastal Pointe Drive, Suite 404, Jupiter, FL 33477, USA; (G.K.); (T.C.V.); (R.T.)
| | - Mark Baer
- EnGen Bio LLC, 61 Avondale Ave., Redwood City, CA 94062, USA; (M.B.); (M.R.A.)
| | - Mark R. Alfenito
- EnGen Bio LLC, 61 Avondale Ave., Redwood City, CA 94062, USA; (M.B.); (M.R.A.)
| | - Theo C. Verwoerd
- Dyadic International Inc., 140 Intracoastal Pointe Drive, Suite 404, Jupiter, FL 33477, USA; (G.K.); (T.C.V.); (R.T.)
| | - Andriy Kovalchuk
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 Espoo, Finland; (A.K.); (M.G.W.); (M.S.)
| | - Marilyn G. Wiebe
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 Espoo, Finland; (A.K.); (M.G.W.); (M.S.)
| | - Tor Kristian Andersen
- Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway; (T.K.A.); (G.G.)
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, 02044 Espoo, Finland; (A.K.); (M.G.W.); (M.S.)
| | - Ronen Tchelet
- Dyadic International Inc., 140 Intracoastal Pointe Drive, Suite 404, Jupiter, FL 33477, USA; (G.K.); (T.C.V.); (R.T.)
| | - Richard Kensinger
- Sanofi Pasteur, 1541 Ave. Marcel Mérieux, 69280 Marcy l’Etoile, France;
| | - Gunnveig Grødeland
- Institute of Clinical Medicine, University of Oslo, 0027 Oslo, Norway; (T.K.A.); (G.G.)
- Department of Immunology and Transfusion Medicine, Oslo University Hospital, 0027 Oslo, Norway
| | - Mark Emalfarb
- Dyadic International Inc., 140 Intracoastal Pointe Drive, Suite 404, Jupiter, FL 33477, USA; (G.K.); (T.C.V.); (R.T.)
- Correspondence:
| |
Collapse
|