1
|
Lagunes-Quintanilla R, Gómez-Romero N, Mendoza-Martínez N, Castro-Saines E, Galván-Arellano D, Basurto-Alcantara FJ. Perspectives on using integrated tick management to control Rhipicephalus microplus in a tropical region of Mexico. Front Vet Sci 2024; 11:1497840. [PMID: 39649682 PMCID: PMC11621215 DOI: 10.3389/fvets.2024.1497840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 12/11/2024] Open
Abstract
The Rhipicephalus microplus tick is widely recognized as the most economically significant ectoparasite affecting cattle globally, particularly in the Neotropical region. In Mexico, at least 65% of the cattle are infested with R. microplus and are susceptible to tick-borne diseases. Integrated tick management strategies are required to maintain compatible levels of animal production and reduce the reliance on chemical acaricides for tick control. Therefore, this paper aims to analyze current methods for controlling tick infestation in extensively raised cattle using Integrated Tick Management (ITM) and to propose an ITM program suitable for implementation in the humid tropical region of Veracruz, Mexico.
Collapse
Affiliation(s)
- Rodolfo Lagunes-Quintanilla
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad—INIFAP, Carretera Federal Cuernavaca—Cuautla, Jiutepec, Mexico
| | - Ninnet Gómez-Romero
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Nancy Mendoza-Martínez
- Posgrado en Ciencias de la Producción y de la Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edgar Castro-Saines
- Centro Nacional de Investigación Disciplinaria en Salud Animal e Inocuidad—INIFAP, Carretera Federal Cuernavaca—Cuautla, Jiutepec, Mexico
| | - Dulce Galván-Arellano
- Centro de Investigación y Estudios Avanzados en Salud Animal, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca de Lerdo, Mexico
| | - Francisco Javier Basurto-Alcantara
- Vaccinology Laboratory, Department of Microbiology and Immunology, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
2
|
Manjunathachar HV, Kumar B, Parthasarathi BC, Chigure GM, Saravanan BC, Sankar M, Harish DR, de la Fuente J, Ghosh S. Cocktail vaccine for the management of Hyalomma anatolicum and Rhipicephalus microplus. Front Immunol 2024; 15:1471317. [PMID: 39628484 PMCID: PMC11611848 DOI: 10.3389/fimmu.2024.1471317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 12/06/2024] Open
Abstract
Introduction Globally, ticks rank second only to mosquitoes as vectors of deadly pathogens affecting humans and first in transmitting animal pathogens, presenting a significant challenge to human wellness and sustainability of livestock-based industries. Traditional tick control via chemical acaricides impacts on the environment and has led to the emergence of multi-acaricide-resistant tick populations. Use of immunoprophylactic, along with other components of integrated tick management, holds the potential to mitigate tick infestations in a sustainable manner. To control multi-species tick infestations, the concept of a cocktail vaccine comprising of more than one antigens has emerged as a viable solution due to the inconsistent efficacy of single antigen-based immunization protocol. Methods In this study, a dual antigen cocktail immunization protocol was developed targeting ferritin2 (FER2) and tropomyosin (TPM) proteins, which are associated with ticks' essential cellular and physiological functions, like blood iron homeostasis and muscle contractions. Results Dual gene silencing of FER2 and TPM genes in Hyalomma anatolicum resulted in a 75.3% reduction in infested ticks, a 95.4% decrease in egg masses, and a complete loss of egg hatching when compared to control ticks. Microscopically, an altered ovarian cellular architecture, marked by vacuolation and reduced nucleus-to-cytoplasmic ratio were noted in the gene knocked down ticks. An immunization with cocktails of 300 µg dose of each protein, rHaFER2 and rHaTPM was standardized in a rat model and was used to immunize cross-bred (Bos indicus x B. taurus) male cattle with Montanide ISA 50V2 adjuvant on days 0, 28, and 49. A significant (p < 0.001) IgG and IgG2 antibody response was observed in the immunized animals with high IgG levels sustained until day 119 post-primary immunization, showing a 4.1-fold increase over the pre-immunization period. The animals were challenged with larvae and adults of H. anatolicum and larvae of Rhipicephalus microplus. Immunization with the cocktail antigen resulted an efficacy of 70% and 76% against H. anatolicum larvae and adults, respectively, and 54% against R. microplus infestations. Compared to single-antigen immunization, the immunization with cocktail antigens demonstrated higher protection against R. microplus and H. anatolicum ticks. The results advance the development of cocktail vaccines to control multiple tick species.
Collapse
Affiliation(s)
- Haranahally Vasanthachar Manjunathachar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Binod Kumar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Balasamudram Chandrasekhar Parthasarathi
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Gajanan M. Chigure
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Buddhi Chandrasekaran Saravanan
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Muthu Sankar
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - Darasaguppe Ramachandra Harish
- Division of Animal Biotechnology, Indian Council of Agricultural Research (ICAR)-Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Srikanta Ghosh
- Entomology Laboratory, Division of Parasitology, Indian Council of Agricultural Research (ICAR)- Indian Veterinary Research Institute (IVRI)-Izatnagar, Bareilly, Uttar Pradesh, India
- Indian Veterinary Research Institute (IVRI)-Eastern Regional Centre, Kolkata, West Bengal, India
| |
Collapse
|
3
|
Ndawula C, Emudong P, Muwereza N, Currà C. Insights into Theileria transmission-blocking vaccines for East Coast fever control: A disease with an "outdated vaccination approach". Ticks Tick Borne Dis 2024; 15:102386. [PMID: 39128161 DOI: 10.1016/j.ttbdis.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024]
Abstract
Instead of using the Infection and Treatment Method (ITM)-based vaccine, is it possible to control East Coast Fever (ECF) through blocking Theileria parva transmission in ticks and cattle? This review pursues this question. It's over 100 years since Arnold Theiler (1912) first illustrated the natural ITM as a vaccination approach against ECF-cattle disease. The approach entails infecting cattle with live Theileria sporozoites and co-treatment with long-acting tetracycline. Building on the ITM principle, the "Muguga"-cocktail ECF vaccine was developed in the 1970s and it remains the only commercially available-one. Although the vaccine induces cattle-protection, the vaccination approach still raises several drawbacks. Of those, the most outstanding is the vaccine-safety. This is implied because after ITM vaccination, cattle revert to T. parva pathogen reservoirs, therefore, during blood meal-acquisition, the ticks co-ingest T. parva pathogens. Ultimately, the pathogens are further transmitted transstadial; from larvae to nymph and nymph-adults and later re-transmitted to cattle during blood-meal acquisition. Consequently, the vaccine-constituting T. parva strains are introduced and (re) spread in non-endemic/ endemic areas. Precisely, rather than eradicating the disease, the ITM vaccination-approach promotes ECF endemicity. With advent of novel vaccination approaches toward vector and vector-borne disease control, ECF-control based on ITM of vaccination is considered outdated. The review highlights the need for embracing a holistic integrative vaccination approach entailing blocking Theileria pathogen-development and transmission both in the ticks and cattle, and/or the tick-population.
Collapse
Affiliation(s)
- C Ndawula
- National Agricultural Research Organization, P.O Box 295, Entebbe, Uganda; National Livestock Resources Research Institute, P.O Box 5704, Wakiso, Uganda.
| | - P Emudong
- National Agricultural Research Organization, P.O Box 295, Entebbe, Uganda; National Livestock Resources Research Institute, P.O Box 5704, Wakiso, Uganda
| | - N Muwereza
- National Agricultural Research Organization, P.O Box 295, Entebbe, Uganda; National Livestock Resources Research Institute, P.O Box 5704, Wakiso, Uganda
| | - C Currà
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, ISTITUTO SUPERIORE di SANITÀ, Viale Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
4
|
Kabi F, Contreras M, Semakula J, Sánchez-Sánchez M, Muñoz-Hernández C, Mugerwa S, Kasaija P, Kirunda H, de la Fuente G, Fernández-Melgar R, Rafael M, Fernández de Mera IG, Matovu M, Kyakuwa I, Dhikusooka M, Nsereko G, Boma P, Bugeza J, Moses M, Namukasa A, Obonyo P, Ssekabunga N, Adyero OE, Rutaisire J, Gortazar C, de la Fuente J. Evaluation of effectiveness and safety of Subolesin anti-tick vaccine in Ugandan multi-site field trial. NPJ Vaccines 2024; 9:174. [PMID: 39294184 PMCID: PMC11410822 DOI: 10.1038/s41541-024-00966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Vaccines are the most effective and sustainable intervention to control ticks and tick-borne diseases (TBD). Using a personalized vaccine design based on regional tick genotypes, a Rhipicephalus appendiculatus Subolesin protective antigen was used in a field trial evaluating tick vaccine efficacy, effectiveness, and safety in cattle infested with multiple tick species in different Ugandan agro-ecological zones. Vaccination with SUB was safe with a protective capacity against anemia and infection, and reduced the number of infested cattle, tick fitness (feeding and reproduction) with vaccine effectiveness against multiple tick species between 93.2% at 167-196 days post-vaccination (dpv) and 61.4% at 251-327 dpv. Total integrated vaccine efficacy/effectiveness was estimated as 98.8%. The Subolesin-based vaccine is protective against multiple cattle tick infestations under field conditions in Uganda. These results support registration and commercialization of the vaccine to reduce tick populations and associated risks for human and animal TBD and chemical acaracides in Uganda.
Collapse
Affiliation(s)
- Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda.
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Jimmy Semakula
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Marta Sánchez-Sánchez
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Clara Muñoz-Hernández
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Paul Kasaija
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Halid Kirunda
- Mbarara Zonal Agricultural Research and Development Institute (Mbarara ZARDI), National Agricultural Research Organization, Mbarara City, Uganda
| | - Gabriela de la Fuente
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real, Spain
| | - Rubén Fernández-Melgar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real, Spain
| | - Marta Rafael
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
- Sabiotec, Edificio incubadora de empresas UCLM, Camino de Moledores s/n, Ciudad Real, Spain
| | - Isabel G Fernández de Mera
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - Moses Matovu
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Ivan Kyakuwa
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Moses Dhikusooka
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Godfrey Nsereko
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Paul Boma
- Nabuin ZARDI, 9HQG+5R7 Lorengdwat road, Lorengedwat, Uganda
| | - James Bugeza
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Mwesigwa Moses
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | | | - Philip Obonyo
- Uganda government prison farm, 3FJ7+PCH, Kiburara, Uganda
| | - Nicholas Ssekabunga
- Mbarara Zonal Agricultural Research and Development Institute (Mbarara ZARDI), National Agricultural Research Organization, Mbarara City, Uganda
| | | | - Justus Rutaisire
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala, Uganda
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ciudad Real, Spain.
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
5
|
Perumalsamy N, Sharma R, Subramanian M, Nagarajan SA. Hard Ticks as Vectors: The Emerging Threat of Tick-Borne Diseases in India. Pathogens 2024; 13:556. [PMID: 39057783 PMCID: PMC11279560 DOI: 10.3390/pathogens13070556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 07/28/2024] Open
Abstract
Hard ticks (Ixodidae) play a critical role in transmitting various tick-borne diseases (TBDs), posing significant global threats to human and animal health. Climatic factors influence the abundance, diversity, and vectorial capacity of tick vectors. It is imperative to have a comprehensive understanding of hard ticks, pathogens, eco-epidemiology, and the impact of climatic changes on the transmission dynamics of TBDs. The distribution and life cycle patterns of hard ticks are influenced by diverse ecological factors that, in turn, can be impacted by changes in climate, leading to the expansion of the tick vector's range and geographical distribution. Vector competence, a pivotal aspect of vectorial capacity, involves the tick's ability to acquire, maintain, and transmit pathogens. Hard ticks, by efficiently feeding on diverse hosts and manipulating their immunity through their saliva, emerge as competent vectors for various pathogens, such as viruses, parasites and bacteria. This ability significantly influences the success of pathogen transmission. Further exploration of genetic diversity, population structure, and hybrid tick vectors is crucial, as they play a substantial role in influencing vector competence and complicating the dynamics of TBDs. This comprehensive review deals with important TBDs in India and delves into a profound understanding of hard ticks as vectors, their biology, and the factors influencing their vector competence. Given that TBDs continue to pose a substantial threat to global health, the review emphasizes the urgency of investigating tick control strategies and advancing vaccine development. Special attention is given to the pivotal role of population genetics in comprehending the genetic diversity of tick populations and providing essential insights into their adaptability to environmental changes.
Collapse
Affiliation(s)
| | | | | | - Shriram Ananganallur Nagarajan
- Division of Vector Biology and Control, Indian Council of Medical Research—Vector Control Research Centre (ICMR-VCRC), Puducherry 605006, India; (N.P.); (R.S.); (M.S.)
| |
Collapse
|
6
|
de la Fuente J, Rutaisire J. Bibliometric analysis for the identification of main limitations and future directions of vaccines for the control of ticks and tick-borne pathogens in Uganda. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2024; 5:100175. [PMID: 38689738 PMCID: PMC11058720 DOI: 10.1016/j.crpvbd.2024.100175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 05/02/2024]
Abstract
Ticks and tick-borne diseases (TBD) are a growing threat for human and animal health worldwide with high incidence in African countries such as Uganda where it affects cattle health and production. Considering recent advances in bibliometric analysis, in this review we used a bibliometric descriptive approach for the analysis of publications and patents in the fields of ticks, TBD, and vaccines in Uganda. The results showed that major gaps and limitations are associated with (i) low contributions from Ugandan institutions, (ii) limited international collaborations, (iii) poor impact of translational research, and (iv) little research on tick control vaccines. The results were then used to propose future directions to approach these limitations in Uganda. Although ongoing initiatives and international collaborations are contributing to address major gaps and limitations, future directions should advance in these collaborative projects together with new initiatives addressing (i) basic and translational research on TBD such as CCHF and ASF, (ii) participation of Ugandan institutions in new international consortia in this area, (iii) promoting communication of these initiatives to Ugandan cattle holders and general population to attract support from public and private sectors, (iv) stimulate and support scientific publications and patents with participation of Ugandan scientists, and (v) build and implement production capacity for vaccines in Uganda. These results contribute to guiding Ugandan scientists and national authorities to face challenges posed by ticks and TBD with implications for other African countries.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos (IREC), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Castilla-La Mancha (UCLM)-Junta de Comunidades de Castilla-La Mancha (JCCM), Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Justus Rutaisire
- National Livestock Resources Research Institute (NaLIRRI), National Agricultural Research Organization, Kampala P.O. Box 5704, Uganda
| |
Collapse
|
7
|
de la Fuente J, Ghosh S. Evolution of tick vaccinology. Parasitology 2024:1-8. [PMID: 38586999 DOI: 10.1017/s003118202400043x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Ticks represent a major concern for society worldwide. Ticks are also difficult to control, and vaccines represent the most efficacious, safe, economically feasible and environmentally sustainable intervention. The evolution of tick vaccinology has been driven by multiple challenges such as (1) Ticks are difficult to control, (2) Vaccines control tick infestations by reducing ectoparasite fitness and reproduction, (3) Vaccine efficacy against multiple tick species, (4) Impact of tick strain genetic diversity on vaccine efficacy, (5) Antigen combination to improve vaccine efficacy, (6) Vaccine formulations and delivery platforms and (7) Combination of vaccines with transgenesis and paratransgenesis. Tick vaccine antigens evolved from organ protein extracts to recombinant proteins to chimera designed by vaccinomics and quantum vaccinomics. Future directions will advance in these areas together with other novel technologies such as multiomics, AI and Big Data, mRNA vaccines, microbiota-driven probiotics and vaccines, and combination of vaccines with other interventions in collaboration with regions with high incidence of tick infestations and tick-borne diseases for a personalized medicine approach.
Collapse
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Srikant Ghosh
- Entomology Laboratory, Parasitology Division, ICAR-Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, UP, India
- Eastern Regional Station- Indian Veterinary Research Institute, 37 Belgachia Road, Kolkata-700037, West Bengal, India
| |
Collapse
|
8
|
Zeb I, Parizi LF, Israr M, da Silva Vaz I, Ali A. Cross-species immunoprotective antigens (subolesin, ferritin 2 and P0) provide protection against Rhipicephalus sanguineus sensu lato. Parasit Vectors 2024; 17:3. [PMID: 38172894 PMCID: PMC10765945 DOI: 10.1186/s13071-023-06079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Tick control is mostly hampered by the rise of acaricide-resistant tick populations. Significant efforts have focused on developing alternative control methods, including cross-species protective and/or cocktail-based anti-tick vaccines, to achieve protection against various tick species. METHODS In this study, full-length open reading frames encoding subolesin (SUB) from Rhipicephalus microplus and ferritin 2 (FER2) from Hyalomma anatolicum as well as the partial 60S acidic ribosomal protein (P0) from R. microplus were cloned, expressed in Escherichia coli and used as vaccine antigens against Rhipicephalus sanguineus sensu lato (R. sanguineus s.l.) infestation in rabbits. RESULTS In silico analyses revealed that the SUB, P0 and FER2 proteins were antigenic and displayed limited similarity to the host's homologous proteins. The proteins shared identities of 97.5%, 100% and 89.5% with their SUB, P0 and FER2 R. sanguineus s.l. orthologous sequences, respectively. Antibodies against each recombinant protein cross-recognized the native proteins in the different tissues and developmental stages of R. sanguineus s.l. Overall efficacy of the SUB, FER2 and cocktail (SUB+FER2+P0) vaccines against R. sanguineus s.l. infestation was 86.3%, 95.9% and 90.9%, respectively. CONCLUSIONS Both mono-antigen and the cocktail anti-tick vaccines affected the biological parameters of R. sanguineus s.l. infestation in the rabbit model, which could be extrapolated to its infested host under natural conditions. These findings support the possibility of using mono-antigenic and cocktail-based vaccines for large-scale anti-tick vaccine development against multiple tick species.
Collapse
Affiliation(s)
- Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan
| | - Luís Fernando Parizi
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, 91501-970, Brazil
| | | | - Itabajara da Silva Vaz
- Centro de Biotecnologia and Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Campus do Vale, Porto Alegre, RS, 91501-970, Brazil
| | - Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, 23200, Pakistan.
| |
Collapse
|
9
|
Co-Immunization Efficacy of Recombinant Antigens against Rhipicephalus microplus and Hyalomma anatolicum Tick Infestations. Pathogens 2023; 12:pathogens12030433. [PMID: 36986356 PMCID: PMC10058648 DOI: 10.3390/pathogens12030433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/02/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
The immunoprophylactic management of ticks is the most effective option to control tick infestations and counter spread the acaricide resistance problem worldwide. Several researchers reported an inconsistent efficacy of the single antigen-based immunization of hosts against different tick species. In the present study, to develop a multi-target immunization protocol, proteins from Rhipicephalus microplus BM86 and Hyalomma anatolicum subolesin (SUB) and tropomyosin (TPM) were targeted to evaluate the cross-protective potential. The sequence identities of the BM86, SUB, and TPM coding genes amongst Indian tick isolates of targeted species were 95.6–99.8%, 98.7–99.6%, and 98.9–99.9%, respectively, while at the predicted amino acid level, the identities were 93.2 to 99.5, 97.6 to 99.4, and 98.2 to 99.3%. The targeted genes were expressed in the eukaryotic expression system, pKLAC2-Kluyveromyces lactis, and 100 µg each of purified recombinant protein (Bm86-89 kDa, SUB-21 kDa, and TPM-36 kDa) mixed with adjuvant was injected individually through the intramuscular route at different sites of the body on days 0, 30, and 60 to immunize cross-bred cattle. Post-immunization, a statistically significant (p < 0.001) antibody response (IgG, IgG1, and IgG2) in comparison to the control, starting from 15 to 140 days, against each antigen was recorded. Following multi-antigen immunization, the animals were challenged twice with the larvae of R. microplus and H. anatolicum and theadults of H. anatolicum, and a significant vaccine efficacy of 87.2% and 86.2% against H. anatolicum larvae and adults, respectively, and 86.7% against R. microplus was obtained. The current study provides significant support to develop a multi-antigen vaccine against cattle tick species.
Collapse
|
10
|
Antunes S, Domingos A. Tick Vaccines and Concealed versus Exposed Antigens. Pathogens 2023; 12:pathogens12030374. [PMID: 36986295 PMCID: PMC10056810 DOI: 10.3390/pathogens12030374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/03/2023] Open
Abstract
Anti-tick vaccines development mainly depends on the identification of suitable antigens, which ideally should have different features. These should be key molecules in tick biology, encoded by a single gene, expressed across life stages and tick tissues, capable of inducing B and T cells to promote an immunological response without allergenic, hemolytic, and toxic effects; and should not be homologous to the mammalian host. The discussion regarding this subject and the usefulness of “exposed” and “concealed” antigens was effectively explored in the publication by Nuttall et al. (2006). The present commentary intends to debate the relevance of such study in the field of tick immunological control.
Collapse
Affiliation(s)
- Sandra Antunes
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
| | - Ana Domingos
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Institute of Hygiene and Tropical Medicine, NOVA University of Lisbon, Rua da Junqueira, 100, 1349-008 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
11
|
The Bm86 Discovery: A Revolution in the Development of Anti-Tick Vaccines. Pathogens 2023; 12:pathogens12020231. [PMID: 36839503 PMCID: PMC9965646 DOI: 10.3390/pathogens12020231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The presence in nature of species with genetic resistance to ticks, or with acquired resistance after repeated tick infestations, has encouraged the scientific community to consider vaccination as an alternative to the unsustainable chemical control of ticks. After numerous attempts to artificially immunize hosts with tick extracts, the purification and characterization of the Bm86 antigen by Willadsen et al. in 1989 constituted a revolutionary step forward in the development of vaccines against ticks. Previously, innovative studies that had used tick gut extracts for the immunization of cattle against Rhipicepahalus microplus (previously named Boophilus microplus) ticks, with amazingly successful results, demonstrated the feasibility of using antigens other than salivary-gland-derived molecules to induce a strong anti-tick immunity. However, the practical application of an anti-tick vaccine required the isolation, identification, and purification of the responsible antigen, which was finally defined as the Bm86 protein. More than thirty years later, the only commercially available anti-tick vaccines are still based on this antigen, and all our current knowledge about the field application of immunological control based on vaccination against ticks has been obtained through the use of these vaccines.
Collapse
|
12
|
Kasaija PD, Contreras M, Kabi F, Mugerwa S, Garrido JM, Gortazar C, de la Fuente J. Oral vaccine formulation combining tick Subolesin with heat inactivated mycobacteria provides control of cross-species cattle tick infestations. Vaccine 2022; 40:4564-4573. [PMID: 35728991 DOI: 10.1016/j.vaccine.2022.06.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/08/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022]
Abstract
Tick vaccines are necessary as part of a One Health approach for the control of tick infestations and tick-borne diseases. Subolesin (SUB, also known as 4D8) is a tick protective antigen that has shown efficacy in vaccine formulations for the control of ectoparasite infestations and pathogen infection/transmission. A recent proof-of-concept study reported oral vaccination combining Rhipicephalus microplus SUB with heat inactivated Mycobacterium bovis (IV) as an immunostimulant for the control of cattle tick infestations. Based on the efficacy of Rhipicephalus decoloratus SUB for the control of multiple cattle tick species in Uganda, herein we design a controlled pen trial using an oral formulation combining R. decoloratus SUB with IV for the control of R. decoloratus and Rhipicephalus appendiculatus cattle tick infestations. Vaccine efficacy (E) of SUB + IV on tick life cycle was compared with IV and SUB alone and with PBS as control. The IgG antibody titers against SUB and M. bovis P22 and the serum levels of selected protein immune biomarkers (IL-1beta, TNF-alpha, C3) were determined and analyzed as possible correlates of protection. Oral immunization with IV and SUB alone and in SUB + IV combination were effective for the control of tick infestations (E = 71-96% for R. decoloratus and 87-99% for R. appendiculatus) with highest E (higher than 95%) for SUB + IV. The results demonstrated that oral immunization with the SUB + IV formulation resulted in effective control of cattle tick infestations through the activation of multiple immune mechanisms. These results support the application of oral vaccine formulations with SUB + IV for the control of cattle infestations with Rhipicephalus species towards improving animal health.
Collapse
Affiliation(s)
- Paul D Kasaija
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Marinela Contreras
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - Fredrick Kabi
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Swidiq Mugerwa
- National Livestock Resources Research Institute (NaLIRRI/NARO), P.O. Box 5704, Wakiso District, Uganda
| | - Joseba M Garrido
- NEIKER-Instituto Vasco de Investigación y Desarrollo Agrario, Animal Health Department, Bizkaia Science and Technology Park 812L, 48160 Derio (Bizkaia), Spain
| | - Christian Gortazar
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ronda de Toledo s/n, 13005 Ciudad Real, Spain; Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK 74078, USA.
| |
Collapse
|
13
|
de la Fuente J, Contreras M. Additional considerations for anti-tick vaccine research. Expert Rev Vaccines 2022; 21:1019-1021. [PMID: 35475778 DOI: 10.1080/14760584.2022.2071704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- José de la Fuente
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Marinela Contreras
- SaBio. Instituto de Investigación en Recursos Cinegéticos IREC-CSIC-UCLM-JCCM, Ciudad Real, Spain
| |
Collapse
|