1
|
Sergeeva OV, Luo L, Guiseppi-Elie A. Cancer theragnostics: closing the loop for advanced personalized cancer treatment through the platform integration of therapeutics and diagnostics. Front Bioeng Biotechnol 2025; 12:1499474. [PMID: 39898278 PMCID: PMC11782185 DOI: 10.3389/fbioe.2024.1499474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cancer continues to be one of the leading causes of death worldwide, and conventional cancer therapies such as chemotherapy, radiation therapy, and surgery have limitations. RNA therapy and cancer vaccines hold considerable promise as an alternative to conventional therapies for their ability to enable personalized therapy with improved efficacy and reduced side effects. The principal approach of cancer vaccines is to induce a specific immune response against cancer cells. However, a major challenge in cancer immunotherapy is to predict which patients will respond to treatment and to monitor the efficacy of the vaccine during treatment. Theragnostics, an integration of diagnostic and therapeutic capabilities into a single hybrid platform system, has the potential to address these challenges by enabling real-time monitoring of treatment response while allowing endogenously controlled personalized treatment adjustments. In this article, we review the current state-of-the-art in theragnostics for cancer vaccines and RNA therapy, including imaging agents, biomarkers, and other diagnostic tools relevant to cancer, and their application in cancer therapy development and personalization. We also discuss the opportunities and challenges for further development and clinical translation of theragnostics in cancer vaccines.
Collapse
Affiliation(s)
| | - Liang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Anthony Guiseppi-Elie
- Bioelectronics, Biosensors and Biochips (C3B), Department of Biomedical Engineering, Texas A&M University, College Station, TX, United States
- Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Full Affiliate Member, Houston Methodist Research Institute, Houston, TX, United States
- ABTECH Scientific, Inc., Biotechnology Research Park, Richmond, VA, United States
| |
Collapse
|
2
|
Chang Y, Chang M, Bao X, Dong C. Advancements in adoptive CAR immune cell immunotherapy synergistically combined with multimodal approaches for tumor treatment. Bioact Mater 2024; 42:379-403. [PMID: 39308543 PMCID: PMC11415837 DOI: 10.1016/j.bioactmat.2024.08.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/25/2024] Open
Abstract
Adoptive immunotherapy, notably involving chimeric antigen receptor (CAR)-T cells, has obtained Food and Drug Administration (FDA) approval as a treatment for various hematological malignancies, demonstrating promising preclinical efficacy against cancers. However, the intricate and resource-intensive autologous cell processing, encompassing collection, expansion, engineering, isolation, and administration, hamper the efficacy of this therapeutic modality. Furthermore, conventional CAR T therapy is presently confined to addressing solid tumors due to impediments posed by physical barriers, the potential for cytokine release syndrome, and cellular exhaustion induced by the immunosuppressive and heterogeneous tumor microenvironment. Consequently, a strategic integration of adoptive immunotherapy with synergistic multimodal treatments, such as chemotherapy, radiotherapy, and vaccine therapy etc., emerges as a pivotal approach to surmount these inherent challenges. This collaborative strategy holds the key to addressing the limitations delineated above, thereby facilitating the realization of more precise personalized therapies characterized by heightened therapeutic efficacy. Such synergistic strategy not only serves to mitigate the constraints associated with adoptive immunotherapy but also fosters enhanced clinical applicability, thereby advancing the frontiers of therapeutic precision and effectiveness.
Collapse
Affiliation(s)
- Yun Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| | - Mingyang Chang
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Institute for Cancer Research, West Lafayette, IN, 47907, USA
| | - Cheng Dong
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, China
| |
Collapse
|
3
|
Roque JA, Lukesh NR, Hendy DA, Dixon TA, Islam MJ, Ontiveros-Padilla L, Pena ES, Lifshits LM, Simpson SR, Batty CJ, Bachelder EM, Ainslie KM. Enhancement of subunit vaccine delivery with zinc-carnosine coordination polymer through the addition of mannan. Int J Pharm 2024; 656:124076. [PMID: 38569976 PMCID: PMC11062752 DOI: 10.1016/j.ijpharm.2024.124076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/31/2024] [Indexed: 04/05/2024]
Abstract
Vaccines represent a pivotal health advancement for preventing infection. However, because carrier systems with repeated administration can invoke carrier-targeted immune responses that diminish subsequent immune responses (e.g., PEG antibodies), there is a continual need to develop novel vaccine platforms. Zinc carnosine microparticles (ZnCar MPs), which are composed of a one-dimensional coordination polymer formed between carnosine and the metal ion zinc, have exhibited efficacy in inducing an immune response against influenza. However, ZnCar MPs' limited suspendability hinders clinical application. In this study, we address this issue by mixing mannan, a polysaccharide derived from yeast, with ZnCar MPs. We show that the addition of mannan increases the suspendability of this promising vaccine formulation. Additionally, since mannan is an adjuvant, we illustrate that the addition of mannan increases the antibody response and T cell response when mixed with ZnCar MPs. Mice vaccinated with mannan + OVA/ZnCar MPs had elevated serum IgG and IgG1 levels in comparison to vaccination without mannan. Moreover, in the mannan + OVA/ZnCar MPs vaccinated group, mucosal washes demonstrated increased IgG, IgG1, and IgG2c titers, and antigen recall assays showed enhanced IFN-γ production in response to MHC-I and MHC-II immunodominant peptide restimulation, compared to the vaccination without mannan. These findings suggest that the use of mannan mixed with ZnCar MPs holds potential for subunit vaccination and its improved suspendability further promotes clinical translation.
Collapse
Affiliation(s)
- John A Roque
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Nicole Rose Lukesh
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Dylan A Hendy
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Timothy A Dixon
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Md Jahirul Islam
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Luis Ontiveros-Padilla
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Erik S Pena
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, United States
| | - Liubov M Lifshits
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Sean R Simpson
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Cole J Batty
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Eric M Bachelder
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Kristy M Ainslie
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, United States; Department of Microbiology and Immunology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
4
|
Brown SR, Vomhof-DeKrey EE. Current Immunotherapy Treatments of Primary Breast Cancer Subtypes. Biomedicines 2024; 12:895. [PMID: 38672249 PMCID: PMC11048522 DOI: 10.3390/biomedicines12040895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/02/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Breast cancer receives the most funding when compared to any other cancer type, according to a global study conducted by The Lancet. Nevertheless, this malignancy remains the most diagnosed cancer among women and relies heavily on a neoadjuvant treatment regimen of chemotherapy and targeted therapy. After standard treatment, 25-30% of breast cancer patients still develop disease recurrence and must undergo cytoreductive debulking surgery followed by intensive chemotherapy. An array of targeted therapies are currently being utilized and developed to alleviate negative side effects, eradicate cancer growth, and diminish disease recurrence. Immunotherapy is a promising cancer therapy that upregulates one's immune system to stimulate a therapeutic effect and is utilized for cancer management among other ailments such as immunodeficiencies, hypersensitivity reactions, autoimmune diseases, inflammatory disorders, tissue and organ transplantation, and infectious diseases. This review highlights the five primary subtypes of breast cancer, provides a brief history of immunotherapy, evaluates the current landscape of treating breast cancer with immunotherapy, analyzes selected ongoing or recently completed immunotherapy clinical trials for hormone receptor-positive, HER2-enriched, and triple-negative breast cancer, and examines future trends for the treatment of breast cancer with immunotherapeutic techniques. This review provides a formal summary categorized by breast cancer subtype rather than types of immunotherapeutic treatment.
Collapse
Affiliation(s)
- Savannah R. Brown
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
| | - Emilie E. Vomhof-DeKrey
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA;
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
5
|
Hong E, Dobrovolskaia MA. Detection of Antigen Presentation by Murine Bone Marrow-Derived Dendritic Cells After Treatment with Nanoparticles. Methods Mol Biol 2024; 2789:161-169. [PMID: 38507002 DOI: 10.1007/978-1-0716-3786-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Nanoparticles are frequently considered in vaccine applications due to their ability to co-deliver multiple antigens and adjuvants to antigen-presenting cells. Some nanoparticles also have intrinsic adjuvant properties that further enhance their ability to stimulate immune cells. The delivery of tumor-specific antigens to antigen-presenting cells (APCs) with subsequent antigenic peptide presentation in the context of class I major histocompatibility complex (MHC-I) molecules represents an essential effort in developing nanotechnology-based cancer vaccines. Experimental models are, therefore, needed to gauge the efficiency of nanotechnology carriers in achieving peptide antigen delivery to APCs and presentation in the context of MHC-I. The assay described herein utilizes a model antigen ovalbumin and model APCs, murine bone marrow-derived dendritic cells. The 25-D1.16 antibody, specific to the ovalbumin (OVA) MHC-I peptide SIINFEKL, recognizes this peptide presented in the context of the murine H2-Kb class I MHC molecule, allowing the presentation of this antigen on APCs to be detected by flow cytometry after nanoparticle delivery.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
6
|
Hong E, Dobrovolskaia MA. Antigen-Specific Stimulation of CD8 + T Cells by Murine Bone Marrow-Derived Dendritic Cells After Treatment with Nanoparticles. Methods Mol Biol 2024; 2789:171-184. [PMID: 38507003 DOI: 10.1007/978-1-0716-3786-9_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The assessment of antigen presentation by dendritic cells and subsequent antigen-dependent activation of T lymphocytes is a critical step underlying the efficacy of nanoparticle-based therapeutic vaccines. Since nanoparticle physicochemical properties determine their interactions with the immune system, the early stages of nanotechnology-based vaccine development commonly involve optimizing the particles' properties to create a formulation with desired stability, antigen release, targeting of desired cell populations, and efficacy. To accelerate this process, in vitro models suitable for the rapid assessment of a novel vaccine candidate's efficacy are highly desirable. One such model is described in this protocol. Herein, nanoparticles are formulated to deliver a model antigen, SIINFEKL (OVA257-264), the immunodominant class I peptide derived from ovalbumin. These nanoparticles are added to the culture of murine bone marrow-derived dendritic cells, which are subsequently co-incubated with CD8+ T cells from OT-I transgenic mice. The efficient antigen presentation by dendritic cells results in the antigen-dependent proliferation of CD8+ T cells, which is detected by flow cytometry.
Collapse
Affiliation(s)
- Enping Hong
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Marina A Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
7
|
Ye F, Dewanjee S, Li Y, Jha NK, Chen ZS, Kumar A, Vishakha, Behl T, Jha SK, Tang H. Advancements in clinical aspects of targeted therapy and immunotherapy in breast cancer. Mol Cancer 2023; 22:105. [PMID: 37415164 PMCID: PMC10324146 DOI: 10.1186/s12943-023-01805-y] [Citation(s) in RCA: 204] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/08/2023] [Indexed: 07/08/2023] Open
Abstract
Breast cancer is the second leading cause of death for women worldwide. The heterogeneity of this disease presents a big challenge in its therapeutic management. However, recent advances in molecular biology and immunology enable to develop highly targeted therapies for many forms of breast cancer. The primary objective of targeted therapy is to inhibit a specific target/molecule that supports tumor progression. Ak strain transforming, cyclin-dependent kinases, poly (ADP-ribose) polymerase, and different growth factors have emerged as potential therapeutic targets for specific breast cancer subtypes. Many targeted drugs are currently undergoing clinical trials, and some have already received the FDA approval as monotherapy or in combination with other drugs for the treatment of different forms of breast cancer. However, the targeted drugs have yet to achieve therapeutic promise against triple-negative breast cancer (TNBC). In this aspect, immune therapy has come up as a promising therapeutic approach specifically for TNBC patients. Different immunotherapeutic modalities including immune-checkpoint blockade, vaccination, and adoptive cell transfer have been extensively studied in the clinical setting of breast cancer, especially in TNBC patients. The FDA has already approved some immune-checkpoint blockers in combination with chemotherapeutic drugs to treat TNBC and several trials are ongoing. This review provides an overview of clinical developments and recent advancements in targeted therapies and immunotherapies for breast cancer treatment. The successes, challenges, and prospects were critically discussed to portray their profound prospects.
Collapse
Affiliation(s)
- Feng Ye
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Yuehua Li
- Department of Medical Oncology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, China
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, 144411, India
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, New York, 11439, USA
| | - Ankush Kumar
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Vishakha
- Pharmaceutical and Health Sciences, Career Point University, Hamirpur, Himachal Pradesh, India
| | - Tapan Behl
- School of Health Sciences and Technology, University of Petroleum and Energy Studies, Bidholi, Dehradun, Uttarakhand, India.
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, India.
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, 140413, India.
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun, 248007, India.
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
8
|
Fatima GN, Fatma H, Saraf SK. Vaccines in Breast Cancer: Challenges and Breakthroughs. Diagnostics (Basel) 2023; 13:2175. [PMID: 37443570 DOI: 10.3390/diagnostics13132175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Breast cancer is a problem for women's health globally. Early detection techniques come in a variety of forms ranging from local to systemic and from non-invasive to invasive. The treatment of cancer has always been challenging despite the availability of a wide range of therapeutics. This is either due to the variable behaviour and heterogeneity of the proliferating cells and/or the individual's response towards the treatment applied. However, advancements in cancer biology and scientific technology have changed the course of the cancer treatment approach. This current review briefly encompasses the diagnostics, the latest and most recent breakthrough strategies and challenges, and the limitations in fighting breast cancer, emphasising the development of breast cancer vaccines. It also includes the filed/granted patents referring to the same aspects.
Collapse
Affiliation(s)
- Gul Naz Fatima
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Hera Fatma
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| | - Shailendra K Saraf
- Division of Pharmaceutical Chemistry, Faculty of Pharmacy, Babu Banarasi Das Northern India Institute of Technology, Lucknow 226028, Uttar Pradesh, India
| |
Collapse
|
9
|
Amaya L, Grigoryan L, Li Z, Lee A, Wender PA, Pulendran B, Chang HY. Circular RNA vaccine induces potent T cell responses. Proc Natl Acad Sci U S A 2023; 120:e2302191120. [PMID: 37155869 PMCID: PMC10193964 DOI: 10.1073/pnas.2302191120] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/14/2023] [Indexed: 05/10/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of RNAs commonly found across eukaryotes and viruses, characterized by their resistance to exonuclease-mediated degradation. Their superior stability compared to linear RNAs, combined with previous work showing that engineered circRNAs serve as efficient protein translation templates, make circRNA a promising candidate for RNA medicine. Here, we systematically examine the adjuvant activity, route of administration, and antigen-specific immunity of circRNA vaccination in mice. Potent circRNA adjuvant activity is associated with RNA uptake and activation of myeloid cells in the draining lymph nodes and transient cytokine release. Immunization of mice with engineered circRNA encoding a protein antigen delivered by a charge-altering releasable transporter induced innate activation of dendritic cells, robust antigen-specific CD8 T cell responses in lymph nodes and tissues, and strong antitumor efficacy as a therapeutic cancer vaccine. These results highlight the potential utility of circRNA vaccines for stimulating potent innate and T cell responses in tissues.
Collapse
Affiliation(s)
- Laura Amaya
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA94305
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA94305
| | - Lilit Grigoryan
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Zhijian Li
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Audrey Lee
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Paul A. Wender
- Department of Chemistry, Stanford University, Stanford, CA94305
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA94305
| | - Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA94305
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA94305
- HHMI, Stanford University, Stanford, CA94305
| |
Collapse
|
10
|
Le I, Dhandayuthapani S, Chacon J, Eiring AM, Gadad SS. Harnessing the Immune System with Cancer Vaccines: From Prevention to Therapeutics. Vaccines (Basel) 2022; 10:816. [PMID: 35632572 PMCID: PMC9146235 DOI: 10.3390/vaccines10050816] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 11/18/2022] Open
Abstract
Prophylactic vaccination against infectious diseases is one of the most successful public health measures of our lifetime. More recently, therapeutic vaccination against established diseases such as cancer has proven to be more challenging. In the host, cancer cells evade immunologic regulation by multiple means, including altering the antigens expressed on their cell surface or recruiting inflammatory cells that repress immune surveillance. Nevertheless, recent clinical data suggest that two classes of antigens show efficacy for the development of anticancer vaccines: tumor-associated antigens and neoantigens. In addition, many different vaccines derived from antigens based on cellular, peptide/protein, and genomic components are in development to establish their efficacy in cancer therapy. Some vaccines have shown promising results, which may lead to favorable outcomes when combined with standard therapeutic approaches. This review provides an overview of the innate and adaptive immune systems, their interactions with cancer cells, and the development of various different vaccines for use in anticancer therapeutics.
Collapse
Affiliation(s)
- Ilene Le
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Subramanian Dhandayuthapani
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Jessica Chacon
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
| | - Anna M. Eiring
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA; (I.L.); (S.D.); (J.C.)
- L. Frederick Francis Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
- Mays Cancer Center, UT Health San Antonio MD Anderson Cancer Center, San Antonio, TX 78229, USA
| |
Collapse
|
11
|
Advances in the Immunomodulatory Properties of Glycoantigens in Cancer. Cancers (Basel) 2022; 14:cancers14081854. [PMID: 35454762 PMCID: PMC9032556 DOI: 10.3390/cancers14081854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This work reviews the role of aberrant glycosylation in cancer cells during tumour growth and spreading, as well as in immune evasion. The interaction of tumour-associated glycans with the immune system through C-type lectin receptors can favour immune escape but can also provide opportunities to develop novel tumour immunotherapy strategies. This work highlights the main findings in this area and spotlights the challenges that remain to be investigated. Abstract Aberrant glycosylation in tumour progression is currently a topic of main interest. Tumour-associated carbohydrate antigens (TACAs) are expressed in a wide variety of epithelial cancers, being both a diagnostic tool and a potential treatment target, as they have impact on patient outcome and disease progression. Glycans affect both tumour-cell biology properties as well as the antitumor immune response. It has been ascertained that TACAs affect cell migration, invasion and metastatic properties both when expressed by cancer cells or by their extracellular vesicles. On the other hand, tumour-associated glycans recognized by C-type lectin receptors in immune cells possess immunomodulatory properties which enable tumour growth and immune response evasion. Yet, much remains unknown, concerning mechanisms involved in deregulation of glycan synthesis and how this affects cell biology on a major level. This review summarises the main findings to date concerning how aberrant glycans influence tumour growth and immunity, their application in cancer treatment and spotlights of unanswered challenges remaining to be solved.
Collapse
|