1
|
Qiu T, Kong Y, Wei G, Sun K, Wang R, Wang Y, Chen Y, Wang W, Zhang Y, Jiang C, Yang P, Xie T, Chen X. CCDC6-RET fusion protein regulates Ras/MAPK signaling through the fusion- GRB2-SHC1 signal niche. Proc Natl Acad Sci U S A 2024; 121:e2322359121. [PMID: 38805286 PMCID: PMC11161787 DOI: 10.1073/pnas.2322359121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/08/2024] [Indexed: 05/30/2024] Open
Abstract
Rearranged during transfection (RET) rearrangement oncoprotein-mediated Ras/MAPK signaling cascade is constitutively activated in cancers. Here, we demonstrate a unique signal niche. The niche is a ternary complex based on the chimeric RET liquid-liquid phase separation. The complex comprises the rearranged kinase (RET fusion); the adaptor (GRB2), and the effector (SHC1). Together, they orchestrate the Ras/MAPK signal cascade, which is dependent on tyrosine kinase. CCDC6-RET fusion undergoes LLPS requiring its kinase domain and its fusion partner. The CCDC6-RET fusion LLPS promotes the autophosphorylation of RET fusion, with enhanced kinase activity, which is necessary for the formation of the signaling niche. Within the signal niche, the interactions among the constituent components are reinforced, and the signal transduction efficiency is amplified. The specific RET fusion-related signal niche elucidates the mechanism of the constitutive activation of the Ras/MAPK signaling pathway. Beyond just focusing on RET fusion itself, exploration of the ternary complex potentially unveils a promising avenue for devising therapeutic strategies aimed at treating RET fusion-driven diseases.
Collapse
Affiliation(s)
- Ting Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yichao Kong
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Guifeng Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Kai Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Ruijie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yang Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yiji Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Wenxin Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Yun Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Caihong Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Peiguo Yang
- School of Life Sciences, Westlake University, Hangzhou310024, China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| | - Xiabin Chen
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
- Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang311121, China
| |
Collapse
|
2
|
Coelho YNB, Soldi LR, da Silva PHR, Mesquita CM, Paranhos LR, dos Santos TR, Silva MJB. Tyrosine kinase inhibitors as an alternative treatment in canine mast cell tumor. Front Vet Sci 2023; 10:1188795. [PMID: 37360406 PMCID: PMC10285312 DOI: 10.3389/fvets.2023.1188795] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
The current gold standard treatment for canine mast cell tumors (MCT) uses vinblastine sulfate (VBL) as chemotherapy, although tyrosine kinase inhibitors (TKI) have recently been shown to be worthy candidates for treatment. This systematic review aimed to analyze the overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and complete (CR) or partial response (PR) in dogs with MCT treated with TKI compared to standard VBL treatment. The systematic review was registered in the Open Science Framework (OSF) database under the identifier 10.17605/OSF.IO/WYPN4 (https://osf.io/). An electronic search was performed in nine databases. References from eligible studies were also selected to find more registers. A total of 28 studies met the eligibility criteria, and one more was recovered from the references of eligible studies, totaling 29 selected studies. The overall response rate, complete response, and partial response were higher in dogs treated with tyrosine kinase inhibitors than in dogs treated with vinblastine. The overall survival and progression-free survival of vinblastine-treated dogs were higher compared to tyrosine kinase inhibitors-treated dogs. Dogs with mutated KIT treated with tyrosine kinase inhibitors have longer overall survival and progression-free survival compared to those treated with vinblastine. It is important to consider the limitation of the study which should temper the interpretation of the results, videlicet, the extracted data lacked sample standardization and included variables such as animal characteristics, mutation detection methods, tumor characteristics, and treatment types which may have influenced the outcome of the study. Systematic review registration https://osf.io/, identifier: 10.17605/OSF.IO/WYPN4.
Collapse
Affiliation(s)
| | - Luiz Ricardo Soldi
- Institute of Biomedical Sciences, Federal University of Uberlândia—UFU, Uberlândia, MG, Brazil
| | | | - Caio Melo Mesquita
- School of Dentistry, Federal University of Uberlândia—UFU, Uberlândia, MG, Brazil
| | - Luiz Renato Paranhos
- School of Dentistry, Federal University of Uberlândia—UFU, Uberlândia, MG, Brazil
| | - Thaísa Reis dos Santos
- School of Veterinary Medicine, Federal University of Uberlândia—UFU, Uberlândia, MG, Brazil
| | | |
Collapse
|
3
|
Kim SW, Choi JW, Kim JM, Yoon HY, Bae K, Yoon KA, Kim JH. Case report: Toceranib as adjuvant chemotherapy in a dog with incompletely resected combined hepatocellular-cholangiocarcinoma. Front Vet Sci 2023; 9:963390. [PMID: 36686162 PMCID: PMC9845258 DOI: 10.3389/fvets.2022.963390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023] Open
Abstract
An 11-year-old intact female mixed breed dog was presented with abdominal distention and elevated hepatic enzyme levels. Computed tomography revealed a multicystic hepatic mass at the left medial lobe adjacent to the diaphragm and caudal vena cava. The mass was surgically removed with partial hepatectomy, but it could not be removed completely because of adhesion to the diaphragm. The tissue was submitted for histopathologic evaluation, and the patient was diagnosed with stage IIIA combined hepatocellular-cholangiocarcinoma (cHCC-CC). Considering the residual tumor tissue from incomplete surgical excision, adjuvant chemotherapy was recommended. Tumor tissue obtained from the patient was assessed using an anticancer drug response prediction test, and the results showed that toceranib phosphate was the most effective chemotherapeutic agent for this patient. Toceranib was initiated (3.1 mg/kg, PO, q48 h), and routine adverse effect assessment, including systemic blood pressure measurement, complete blood count, serum biochemical evaluations, and urinalysis were performed at two-week intervals for the first 2 months and every 2 months thereafter. Radiography and ultrasonography were conducted at one-month intervals for the first two months and then every 2 months subsequently. Concurrent hyperadrenocorticism was managed with trilostane (1 to 5 mg/kg, PO, q12h). The patient showed no critical adverse effects of chemotherapy, obvious recurrence, or metastasis. The response to toceranib was assessed as a partial response, and the patient is still alive over 23 months after tumor excision. This is the first case report describing chemotherapy for a dog with cHCC-CC.
Collapse
Affiliation(s)
- Sang-Won Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea,Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Ju-Won Choi
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea
| | - Jeon-Mo Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Hun-Young Yoon
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea,Department of Veterinary Surgery, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Kieun Bae
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea,Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Kyong-Ah Yoon
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea,Department of Veterinary Biochemistry, College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Jung-Hyun Kim
- KU Animal Cancer Center, Konkuk University Veterinary Medical Teaching Hospital, Seoul, South Korea,Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, South Korea,*Correspondence: Jung-Hyun Kim
| |
Collapse
|
4
|
KIM SOOMIN, KIM YEJI, KIM SEEUN, KIM HAJUNG. Comparison of Biomarkers Between Hepatic Tumors in Rat Models and a Dog. In Vivo 2023; 37:252-261. [PMID: 36593028 PMCID: PMC9843797 DOI: 10.21873/invivo.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 01/04/2023]
Abstract
BACKGROUND/AIM N1S1 rat models are commonly used in human medicine to study hepatocellular carcinoma (HCC). However, their use in veterinary medicine has not been reported. Thus, the aim of this study was to investigate whether the N1S1 rat models could be used to study canine HCC. MATERIALS AND METHODS The animals were divided into four groups: normal rat, N1S1 rat, normal dog, and HCC dog. Liver tissues of all animals were evaluated for vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR)-α, PDGFR-β, and c-kit by immunohistochemistry. Slides of each factor were scored according to the percentage of stained tumor cells and intensity of the staining. RESULTS Scores of VEGF and c-kit were high both in the tumor groups (the N1S1 rat and HCC dog groups) and the normal groups of dogs and rats. PDGFR-α was lower in the N1S1 rat group than that in the normal rat group (p=0.0042). It was also lower in the HCC dog group compared to the normal dog group (p=0.0008). PDGFR-β was higher in the HCC dog group than that in the normal dog group (p=0.0023) but was not detectable in the rat groups. EGFR was not detectable in any group. CONCLUSION Based on immunochemistry results, PDGFR-α and PDGFR-β can be used as biomarkers of canine HCC. Because PDGFR-α showed consistency between rats and dogs, it can be used for studying canine HCC.
Collapse
Affiliation(s)
- SOOMIN KIM
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - YEJI KIM
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,BK21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| | - SE EUN KIM
- BK21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,Department of Veterinary Surgery, College of Veterinary Medicine and Biomaterial R&BD Center, Chonnam National University, Gwangju, Republic of Korea
| | - HA-JUNG KIM
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea,BK21 project team, College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
5
|
Shraim AS, Abdel Majeed BA, Al-Binni M, Hunaiti A. Therapeutic Potential of Aptamer-Protein Interactions. ACS Pharmacol Transl Sci 2022; 5:1211-1227. [PMID: 36524009 PMCID: PMC9745894 DOI: 10.1021/acsptsci.2c00156] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Indexed: 11/06/2022]
Abstract
Aptamers are single-stranded oligonucleotides (RNA or DNA) with a typical length between 25 and 100 nucleotides which fold into three-dimensional structures capable of binding to target molecules. Specific aptamers can be isolated against a large variety of targets through efficient and relatively cheap methods, and they demonstrate target-binding affinities that sometimes surpass those of antibodies. Consequently, interest in aptamers has surged over the past three decades, and their application has shown promise in advancing knowledge in target analysis, designing therapeutic interventions, and bioengineering. With emphasis on their therapeutic applications, aptamers are emerging as a new innovative class of therapeutic agents with promising biochemical and biological properties. Aptamers have the potential of providing a feasible alternative to antibody- and small-molecule-based therapeutics given their binding specificity, stability, low toxicity, and apparent non-immunogenicity. This Review examines the general properties of aptamers and aptamer-protein interactions that help to understand their binding characteristics and make them important therapeutic candidates.
Collapse
Affiliation(s)
- Ala’a S. Shraim
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Bayan A. Abdel Majeed
- Department
of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, 19328 Amman, Jordan
- Pharmacological
and Diagnostic Research Center (PDRC), Al-Ahliyya
Amman University, 19328 Amman, Jordan
| | - Maysaa’
Adnan Al-Binni
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| | - Abdelrahim Hunaiti
- Department
of Clinical Laboratory Sciences, School of Science, The University of Jordan, 11942 Amman, Jordan
| |
Collapse
|
6
|
Moshe Halamish H, Zlotver I, Sosnik A. Polymeric nanoparticles surface-complexed with boric acid actively target solid tumors overexpressing sialic acid. J Colloid Interface Sci 2022; 626:916-929. [PMID: 35835042 DOI: 10.1016/j.jcis.2022.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 11/16/2022]
Abstract
Sialic acid is a fundamental component of the tumor microenvironment, modulates cell-cell and cell-extracellular matrix interactions and is associated with bad prognosis and clinical outcomes in different cancers. Capitalizing on the ability of boric acid to form cyclic esters with diols, in this work, we design self-assembled multi-micellar colloidal systems of an amphiphilic poly(vinyl alcohol)-g-poly(methyl methacrylate) copolymer surface-modified with boric acid for the active targeting of solid tumors that overexpress sialic acid. Nanoparticles display sizes in the 100-200 nm range and a spherical morphology, as determined by dynamic light scattering and high resolution-scanning electron microscopy, respectively. The uptake and anti-proliferative activity are assessed in 2D and 3D models of rhabdomyosarcoma in vitro. Surface boration increases the nanoparticle permeability and uptake, especially in rhabdomyosarcoma spheroids that overexpress sialic acid to a greater extent than 2D cultures. The biodistribution of non-borated and borated nanoparticles upon intravenous injection to a subcutaneous rhabdomyosarcoma murine xenograft model confirm a statistically significant increase in the intertumoral accumulation of the modified nanocarriers with respect to the unmodified counterparts and a sharp decrease in major clearance organs such as the liver. Overall, our results highlight the promise of these borated nanomaterials to actively target hypersialylated solid tumors.
Collapse
Affiliation(s)
- Hen Moshe Halamish
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Ivan Zlotver
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion-Israel Institute of Technology, De-Jur Building, Office 607, Technion City 3200003 Haifa, Israel.
| |
Collapse
|
7
|
Balogun TA, Ige OM, Alausa AO, Onyeani CO, Tiamiyu ZA, Omoboyowa DA, Saibu OA, Abdullateef OT. Receptor tyrosine kinases as a therapeutic target by natural compounds in cancer treatment. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00346-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Receptor tyrosine kinases (RTKs) are single-pass transmembrane proteins that play significant roles in regulating cellular processes, including cell division and growth. Overexpression and mutations of RTKs have been found in clinical manifestations of different forms of cancer. Therefore, RTKs have received considerable interest as a therapeutic biomarker in the treatment of cancer cells.
Main body of the abstract
Comprehensive data on RTKs, pharmacological and biological properties of natural compounds were systematically searched up to 2021 using relevant keywords from various databases, such as Google Scholar, PubMed, Web of Science, and Scopus. The scientific search by various standard electronic resources and databases unveils the effectiveness of medicinal plants in the treatment of various cancers. In vitro and in vivo studies suggested that bioactive compounds such as flavonoids, phenols, alkaloids, and many others can be used pharmacologically as RTKs inhibitors (RTKI) either by competing with ATP at the ATP binding site of the tyrosine kinase domain or competing for the receptor extracellular domain. Additionally, studies conducted on animal models indicated that inhibition of RTKs catalytic activity by natural compounds is one of the most effective ways to block the activation of RTKs signaling cascades, thereby hampering the proliferation of cancer cells. Furthermore, various pharmacological experiments, transcriptomic, and proteomic data also reported that cancer cells treated with different plants extracts or isolated phytochemicals exhibited better anticancer properties with minimal side effects than synthetic drugs. Clinically, natural compounds have demonstrated significant anti-proliferative effect via induction of cell apoptosis in cancer cell lines.
Short conclusion
An in-depth knowledge of the mechanism of inhibition and structural characterization of RTKs is important to the design of novel and selective RTKIs. This review focuses on the molecular mechanisms and structures of natural compounds RTKI targeting vascular endothelial growth factor, epidermal growth factor receptor, insulin receptor, and platelet-derived growth factor while also giving future directions to ameliorate the scientific burden of cancer.
Graphic abstract
Collapse
|
8
|
Parcha PK, Sarvagalla S, Ashok C, Sudharshan SJ, Dyavaiah M, Coumar MS, Rajasekaran B. Repositioning antispasmodic drug Papaverine for the treatment of chronic myeloid leukemia. Pharmacol Rep 2021; 73:615-628. [PMID: 33389727 DOI: 10.1007/s43440-020-00196-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/08/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Papaverine is a benzylisoquinoline alkaloid from the plant Papaver somniferum (Opium poppy). It is approved as an antispasmodic drug by the US FDA and is also reported to have anti-cancer properties. Here, Papaverine's activity in chronic myeloid leukemia (CML) is explored using Saccharomyces cerevisiae, mammalian cancer cell lines, and in silico studies. METHODS The sensitivity of wild-type and mutant (anti-oxidant defense, apoptosis) strains of S. cerevisiae to the drug Papaverine was tested by colony formation, spot assays, and AO/EB staining. In vitro cytotoxic effect was investigated on HCT15 (colon), A549 (lung), HeLa (cervical), and K562 (Bcr-Abl positive CML), and RAW 264.7 cell lines; cell cycle, mitochondrial membrane potential, ROS detection analyzed in K562 cells using flow cytometry and apoptotic markers, Bcr-Abl signaling pathways examined by western blotting. Molecular docking and molecular dynamics simulation of Papaverine against the target Bcr-Abl were also carried out. RESULTS Investigation in S. cerevisiae evidenced Papaverine induces ROS-mediated apoptosis. Subsequent in vitro examination showed that CML cell line K562 was more sensitive to the drug Papaverine. Papaverine induces ROS generation, promotes apoptosis, and inhibits Bcr-Abl downstream signaling. Papaverine acts synergistically with the drug Imatinib. Furthermore, the docking and molecular dynamic simulation studies supported that Papaverine binds to the allosteric site of Bcr-Abl. CONCLUSION The data presented here have added support to the concept of polypharmacology of existing drugs and natural compounds to interact with more than one target. This study provides a proof-of-concept for repositioning Papaverine as an anti-CML drug.
Collapse
Affiliation(s)
- Phani Krishna Parcha
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Sailu Sarvagalla
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Cheemala Ashok
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - S J Sudharshan
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Mohane Selvaraj Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| | - Baskaran Rajasekaran
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
- DBT-Interdisciplinary Program in Life Sciences, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Ceramella J, Iacopetta D, Barbarossa A, Caruso A, Grande F, Bonomo MG, Mariconda A, Longo P, Carmela S, Sinicropi MS. Carbazole Derivatives as Kinase-Targeting Inhibitors for Cancer Treatment. Mini Rev Med Chem 2020; 20:444-465. [PMID: 31951166 DOI: 10.2174/1389557520666200117144701] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/01/2019] [Accepted: 10/19/2019] [Indexed: 12/11/2022]
Abstract
Protein Kinases (PKs) are a heterogeneous family of enzymes that modulate several biological pathways, including cell division, cytoskeletal rearrangement, differentiation and apoptosis. In particular, due to their crucial role during human tumorigenesis and cancer progression, PKs are ideal targets for the design and development of effective and low toxic chemotherapeutics and represent the second group of drug targets after G-protein-coupled receptors. Nowadays, several compounds have been claimed to be PKs inhibitors, and some of them, such as imatinib, erlotinib and gefitinib, have already been approved for clinical use, whereas more than 30 others are in various phases of clinical trials. Among them, some natural or synthetic carbazole-based molecules represent promising PKs inhibitors due to their capability to interfere with PK activity by different mechanisms of action including the ability to act as DNA intercalating agents, interfere with the activity of enzymes involved in DNA duplication, such as topoisomerases and telomerases, and inhibit other proteins such as cyclindependent kinases or antagonize estrogen receptors. Thus, carbazoles can be considered a promising this class of compounds to be adopted in targeted therapy of different types of cancer.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Alexia Barbarossa
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Anna Caruso
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | - Fedora Grande
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| | | | | | - Pasquale Longo
- Department of Biology and Chemistry, University of Salerno, 84084 Fisciano, Italy
| | - Saturnino Carmela
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, (CS), Italy
| |
Collapse
|
10
|
Ziemska J, Solecka J, Jarończyk M. In Silico Screening for Novel Leucine Aminopeptidase Inhibitors with 3,4-Dihydroisoquinoline Scaffold. Molecules 2020; 25:molecules25071753. [PMID: 32290229 PMCID: PMC7180978 DOI: 10.3390/molecules25071753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
Cancers are the leading cause of deaths worldwide. In 2018, an estimated 18.1 million new cancer cases and 9.6 million cancer-related deaths occurred globally. Several previous studies have shown that the enzyme, leucine aminopeptidase is involved in pathological conditions such as cancer. On the basis of the knowledge that isoquinoline alkaloids have antiproliferative activity and inhibitory activity towards leucine aminopeptidase, the present study was conducted a study which involved database search, virtual screening, and design of new potential leucine aminopeptidase inhibitors with a scaffold based on 3,4-dihydroisoquinoline. These compounds were then filtered through Lipinski's "rule of five," and 25 081 of them were then subjected to molecular docking. Next, three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed for the selected group of compounds with the best binding score results. The developed model, calculated by leave-one-out method, showed acceptable predictive and descriptive capability as represented by standard statistical parameters r2 (0.997) and q2 (0.717). Further, 35 compounds were identified to have an excellent predictive reliability. Finally, nine selected compounds were evaluated for drug-likeness and different pharmacokinetics parameters such as absorption, distribution, metabolism, excretion, and toxicity. Our methodology suggested that compounds with 3,4-dihydroisoquinoline moiety were potentially active in inhibiting leucine aminopeptidase and could be used for further in-depth in vitro and in vivo studies.
Collapse
Affiliation(s)
- Joanna Ziemska
- National Institute of Public Health–National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
- Correspondence: ; Tel.: +48-22-5421-319
| | - Jolanta Solecka
- National Institute of Public Health–National Institute of Hygiene, Chocimska 24, 00-791 Warsaw, Poland;
| | | |
Collapse
|
11
|
Al-Otaibi JS, Mary YS, Thomas R, Narayana B. Theoretical Studies into the Spectral Characteristics, Biological Activity, and Photovoltaic Cell Efficiency of Four New Polycyclic Aromatic Chalcones. Polycycl Aromat Compd 2020. [DOI: 10.1080/10406638.2020.1747097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Jamelah S. Al-Otaibi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Y. Sheena Mary
- Department of Physics, Fatima Mata National College (Autonomous), Kollam, Kerala, India
| | - Renjith Thomas
- Department of Chemistry, St. Berchmans College (Autonomous), Changanassery, Kerala, India
| | - B. Narayana
- Department of Chemistry, Mangalore University, Mangalagangothri, Karnataka, India
| |
Collapse
|
12
|
Golonko A, Lewandowska H, Świsłocka R, Jasińska U, Priebe W, Lewandowski W. Curcumin as tyrosine kinase inhibitor in cancer treatment. Eur J Med Chem 2019; 181:111512. [DOI: 10.1016/j.ejmech.2019.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/03/2019] [Accepted: 07/04/2019] [Indexed: 12/12/2022]
|
13
|
Khan I, Bhardwaj M, Shukla S, Lee H, Oh MH, Bajpai VK, Huh YS, Kang SC. Carvacrol encapsulated nanocarrier/ nanoemulsion abrogates angiogenesis by downregulating COX-2, VEGF and CD31 in vitro and in vivo in a lung adenocarcinoma model. Colloids Surf B Biointerfaces 2019; 181:612-622. [PMID: 31202132 DOI: 10.1016/j.colsurfb.2019.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 11/18/2022]
Abstract
Nanoemulsion-based synthesis has been introduced to enhance the bioavailability of natural compounds at target sites for their various biomedical applications. In this study, we synthesized carvacrol nanoemulsion (CN) an oil-in-water (O/W) as a nano-emulsion vehicle system by using ultrasonication emulsification for anti-angiogenesis therapy formulated by combining MCT, lecithin, and polysorbate 80 at the O/W interface called carvacrol encapsulated nanoemulsion (CEN). The diameter of CEN determined by TEM analysis was 105.32 nm. The hydrodynamic droplet size was 101.0 nm with a -39.38-mV zeta potential. The stability of the synthesized CEN was approved till 100 days without any change in diameter size distribution and encapsulation efficiency. We evaluated the role of CEN on angiogenesis in lung adenocarcinoma A549 cells both in vitro and in vivo and observed that it reduced the growth and MMP levels of A549 cells in a dose-dependent manner. Exposure to CEN decreased the activation of MAPK p38 as well as ERK. Moreover, we found that CEN reduced the expression of VEGF and CD31 in A549 cells both in vitro and in vivo. Our in-silico study also indicated the binding of carvacrol to COX-2 and VEGF at the active and allosteric sites of CD31 with low binding energy. Overall, CEN induced anti-angiogenic effects in A549 cells in vitro, in silico, and in vivo, thereby establishing its potential as targeted drug delivery vehicle against angiogenesis.
Collapse
Affiliation(s)
- Imran Khan
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Monika Bhardwaj
- Laboratory of Biochemistry and cellular Engineering, Daegu Gyeongbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea; Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea
| | - Shruti Shukla
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea
| | - Mi-Hwa Oh
- Animal Production Research and Development Division, National Institute of Animal Science, Jeonju, 54875, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University-Seoul, 30 Pildong-ro 1-gil, Seoul, 04620, Republic of Korea.
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, 100 Inha-ro, Nam-gu, Incheon, 22212, Republic of Korea.
| | - Sun Chul Kang
- Department of Biotechnology, Daegu University, Gyeongsan, Gyeongbuk, 38453, Republic of Korea.
| |
Collapse
|
14
|
Modiano JF. Comparative Pathogenesis of Cancers in Animals and Humans. Vet Sci 2016; 3:vetsci3030024. [PMID: 29056731 PMCID: PMC5606573 DOI: 10.3390/vetsci3030024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022] Open
Affiliation(s)
- Jaime F Modiano
- Animal Cancer Care and Research Program, University of Minnesota, St. Paul, MN 55108, USA.
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
- Center for Immunology, University of Minnesota, Minneapolis, MN 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN 55455, USA.
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|