1
|
Garduño BM, Holmes TC, Deacon RMJ, Xu X, Cogram P. Octodon degus laboratory colony management principles and methods for behavioral analysis for Alzheimer's disease neuroscience research. Front Aging Neurosci 2025; 16:1517416. [PMID: 39902280 PMCID: PMC11788410 DOI: 10.3389/fnagi.2024.1517416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
The Chilean degu (Octodon degus) is a medium sized, long-lived rodent with traits that make them a natural model for neuroscience research. Their social behaviors, diurnality, and extended developmental time course, when compared to other rodents, make them useful for social behavioral, chronobiology, and developmental research. Lab-kept degus have a long lifespan (5-8 years) and may naturally develop age-related diseases that resemble Alzheimer's disease. While there is significant interest in using the Octodon degus for neuroscience research, including aging and Alzheimer's disease studies, laboratory management and methods for degus research are currently not standardized. This lack of standardization potentially impacts study reproducibility and makes it difficult to compare results between different laboratories. Degus require species-specific housing and handling methods that reflect their ecology, life history, and group-living characteristics. Here we introduce major principles and ethological considerations of colony management and husbandry. We provide clear instructions on laboratory practices necessary for maintaining a healthy and robust colony of degus for Alzheimer's disease neuroscience research towards conducting reproducible studies. We also report detailed procedures and methodical information for degu Apoe genotyping and ethologically relevant burrowing behavioral tasks in laboratory settings.
Collapse
Affiliation(s)
- B. Maximiliano Garduño
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
| | - Todd C. Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
| | - Robert M. J. Deacon
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, United States
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| | - Patricia Cogram
- The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA, United States
- Department of Ecological Sciences, Faculty of Sciences, Institute of Ecology and Biodiversity, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
IKEDA M, KONDO H, HAMADA F, YAMASHITA T, SHIBUYA H. Disseminated histiocytic sarcoma in a degu (Octodon degus). J Vet Med Sci 2024; 86:529-532. [PMID: 38556322 PMCID: PMC11144536 DOI: 10.1292/jvms.24-0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
A 7-year-and-8-month-old, male degu (Octodon degus) with anorexia, depression, and labored breathing was found to have a thoracic effusion and enlargement of the right testis on radiographic examination. Despite treatment, the animal died. At necropsy, hepatomegaly, splenomegaly, and multifocal nodules on the intestinal serosa and mesentery were observed. Histologically, the foci were densely cellular invasive neoplasms composed of sheets of round to polygonal cells, with occasional multinucleated giant cells. Immunohistochemically, the neoplastic cells were immunopositive for ionized calcium-binding adapter molecule 1, human leukocyte antigen-DR, and CD204. These findings were consistent with disseminated histiocytic sarcoma.
Collapse
Affiliation(s)
- Mitsuhiro IKEDA
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Kanagawa, Japan
| | - Hirotaka KONDO
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Kanagawa, Japan
| | - Fuyu HAMADA
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Kanagawa, Japan
| | | | - Hisashi SHIBUYA
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Kanagawa, Japan
| |
Collapse
|
3
|
Payne IL, Munns C, Urresti ST, Rich AF. Concurrent extra‐adrenal paraganglioma and uterine leiomyosarcoma in a degu (
Octodon degus
). VETERINARY RECORD CASE REPORTS 2022. [DOI: 10.1002/vrc2.519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Sonia Tome Urresti
- Montgomery Veterinary Clinic Ashford UK
- White Cliffs Veterinary Surgery Whitfield UK
| | | |
Collapse
|
4
|
Cutaneous and Subcutaneous Tumours of Small Pet Mammals—Retrospective Study of 256 Cases (2014–2021). Animals (Basel) 2022; 12:ani12080965. [PMID: 35454212 PMCID: PMC9028556 DOI: 10.3390/ani12080965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Several species of small mammals are very popular as companion pet animals and therefore demand professional veterinary care, including proper diagnostic and treatment procedures. The incidence of neoplastic diseases in companion pet animals has increased over time, as it has in humans. The aim of this study was to evaluate the incidence of cutaneous tumours in small mammal pets, including guinea pigs, rats, pet rabbits, ferrets, hamsters, degus, African pygmy hedgehogs, Mongolian gerbils and chinchillas, submitted for histopathology in 2014–2021. Malignant tumours represented the predominant group of cutaneous tumours in rats, African pygmy hedgehogs, degus and chinchillas, and represented a significant percentage of lesions in guinea pigs, pet rabbits, ferrets, hamsters and Mongolian gerbils. We also described the first case of melanocytoma in a pet rabbit, epitheliotropic T-cell lymphoma in a degu, cutaneous histiocytic sarcoma in a Mongolian gerbil, fibrosarcoma in two chinchillas and epithelioid haemangioma in a chinchilla. The incidence of malignant neoplasms among spontaneous integumentary tumours submitted for histopathology is high in many species of small mammal pets. Therefore, each cutaneous tumour should be sampled for further diagnosis and treatment. Abstract Since small mammals are gaining popularity as pets in Poland, the number of tumour samples submitted for histopathological examination is quite high. This study was a retrospective analysis of cutaneous and subcutaneous tumours in small pet mammals submitted for histopathology in 2014–2021. The analysis included 256 tumours sampled from 103 guinea pigs, 53 rats, 43 pet rabbits, 21 ferrets, 17 hamsters, 8 degus, 5 African pygmy hedgehogs, 3 Mongolian gerbils and 3 chinchillas. Tumours were diagnosed based on routine histopathology, with additional immunohistochemistry when necessary. The results of this study revealed that the vast majority of cutaneous tumours in guinea pigs were benign, with a predominance of lipoma. Adnexal tumours constituted a significant percentage of cutaneous tumours in guinea pigs (24.3%, with the most common being trichofolliculoma), pet rabbits (46.5%, with the most common being trichoblastoma), ferrets (33.3%, mostly derived from sebaceous glands), hamsters (52.9%, with the most common being trichoepithelioma) and gerbils (66.7%, scent gland epithelioma). Soft tissue sarcomas were a predominant group of tumours in rats (52.8%, with the most common being fibrosarcoma), African pygmy hedgehogs (100%), degus (87.5%) and chinchillas (66.7%). Melanocytic tumours were only sporadically seen in small mammal pets. Mast cell tumours were diagnosed only in ferrets, while epitheliotropic T-cell lymphoma was diagnosed only in a hamster and a degu. In summary, malignant tumours constitute a significant percentage of cutaneous tumours in many species of small mammal pets. Therefore, each cutaneous tumour should be sampled for further cytologic or histopathologic diagnosis.
Collapse
|
5
|
Rivera DS, Lindsay CB, Oliva CA, Bozinovic F, Inestrosa NC. A Multivariate Assessment of Age-Related Cognitive Impairment in Octodon degus. Front Integr Neurosci 2021; 15:719076. [PMID: 34526882 PMCID: PMC8437396 DOI: 10.3389/fnint.2021.719076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/23/2021] [Indexed: 01/27/2023] Open
Abstract
Aging is a progressive functional decline characterized by a gradual deterioration in physiological function and behavior. The most important age-related change in cognitive function is decline in cognitive performance (i.e., the processing or transformation of information to make decisions that includes speed of processing, working memory, and learning). The purpose of this study is to outline the changes in age-related cognitive performance (i.e., short-term recognition memory and long-term learning and memory) in long-lived Octodon degus. The strong similarity between degus and humans in social, metabolic, biochemical, and cognitive aspects makes it a unique animal model for exploring the mechanisms underlying the behavioral and cognitive deficits related to natural aging. In this study, we examined young adult female degus (12- and 24-months-old) and aged female degus (38-, 56-, and 75-months-old) that were exposed to a battery of cognitive-behavioral tests. Multivariate analyses of data from the Social Interaction test or Novel Object/Local Recognition (to measure short-term recognition memory), and the Barnes maze test (to measure long-term learning and memory) revealed a consistent pattern. Young animals formed a separate group of aged degus for both short- and long-term memories. The association between the first component of the principal component analysis (PCA) from short-term memory with the first component of the PCA from long-term memory showed a significant negative correlation. This suggests age-dependent differences in both memories, with the aged degus having higher values of long-term memory ability but poor short-term recognition memory, whereas in the young degus an opposite pattern was found. Approximately 5% of the young and 80% of the aged degus showed an impaired short-term recognition memory; whereas for long-term memory about 32% of the young degus and 57% of the aged degus showed decreased performance on the Barnes maze test. Throughout this study, we outlined age-dependent cognitive performance decline during natural aging in degus. Moreover, we also demonstrated that the use of a multivariate approach let us explore and visualize complex behavioral variables, and identified specific behavioral patterns that allowed us to make powerful conclusions that will facilitate further the study on the biology of aging. In addition, this study could help predict the onset of the aging process based on behavioral performance.
Collapse
Affiliation(s)
- Daniela S Rivera
- GEMA Center for Genomics, Ecology and Environment, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Carolina B Lindsay
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina A Oliva
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Francisco Bozinovic
- Center for Applied Ecology and Sustainability (CAPES), Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nibaldo C Inestrosa
- Center of Aging and Regeneration UC (CARE-UC), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas, Chile
| |
Collapse
|
6
|
Okumura N, Kondo H, Suzuki S, Shibuya H. Thymoma originating from the cervical component of the thymus in a degu. J Vet Diagn Invest 2021; 34:126-129. [PMID: 34515595 DOI: 10.1177/10406387211045643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A 5-y-old, male degu (Octodon degus) was presented with a subcutaneous mass in the ventral aspect of the cervical area. The mass was removed surgically. Histologically, the mass was a densely cellular, expansile neoplasm, with compression of thymic tissue to the periphery. The neoplasm consisted of solid sheets of polygonal cells, mixed with fewer small lymphocytes. Rare Hassall bodies were scattered throughout the mass. Polygonal cells were positive for anti-keratin/cytokeratin AE1/AE3 antibody, and small lymphocytes were positive for anti-CD3 antibody. The histopathologic and immunohistochemical findings were consistent with a thymoma. In addition, an autopsy revealed myxosarcoma of the right thoracic wall with metastasis to the lung. To our knowledge, thymoma originating from the cervical component of the thymus has not been documented previously in a rodent species.
Collapse
Affiliation(s)
- Naka Okumura
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | - Hirotaka Kondo
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| | | | - Hisashi Shibuya
- Laboratory of Veterinary Pathology, Department of Veterinary Medicine, Nihon University, Fujisawa, Kanagawa, Japan
| |
Collapse
|
7
|
Cuenca-Bermejo L, Pizzichini E, Gonçalves VC, Guillén-Díaz M, Aguilar-Moñino E, Sánchez-Rodrigo C, González-Cuello AM, Fernández-Villalba E, Herrero MT. A New Tool to Study Parkinsonism in the Context of Aging: MPTP Intoxication in a Natural Model of Multimorbidity. Int J Mol Sci 2021; 22:4341. [PMID: 33919373 PMCID: PMC8122583 DOI: 10.3390/ijms22094341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/14/2021] [Accepted: 04/19/2021] [Indexed: 11/25/2022] Open
Abstract
The diurnal rodent Octodon degus (O. degus) is considered an attractive natural model for Alzheimer's disease and other human age-related features. However, it has not been explored so far if the O. degus could be used as a model to study Parkinson's disease. To test this idea, 10 adult male O. degus were divided into control group and MPTP-intoxicated animals. Motor condition and cognition were examined. Dopaminergic degeneration was studied in the ventral mesencephalon and in the striatum. Neuroinflammation was also evaluated in the ventral mesencephalon, in the striatum and in the dorsal hippocampus. MPTP animals showed significant alterations in motor activity and in visuospatial memory. Postmortem analysis revealed a significant decrease in the number of dopaminergic neurons in the ventral mesencephalon of MPTP animals, although no differences were found in their striatal terminals. We observed a significant increase in neuroinflammatory responses in the mesencephalon, in the striatum and in the hippocampus of MPTP-intoxicated animals. Additionally, changes in the subcellular expression of the calcium-binding protein S100β were found in the astrocytes in the nigrostriatal pathway. These findings prove for the first time that O. degus are sensitive to MPTP intoxication and, therefore, is a suitable model for experimental Parkinsonism in the context of aging.
Collapse
Affiliation(s)
- Lorena Cuenca-Bermejo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Elisa Pizzichini
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Department of Biology and Biotechnology “Charles Darwin” (BBCD), Sapienza, University of Rome, 00185 Rome, Italy
| | - Valeria C. Gonçalves
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Disciplina de Neurociência, Departamento de Neurologia e Neurocirurgia, Universidade Federal de São Paulo (UNIFESP), São Paulo 04039-032, Brazil
| | - María Guillén-Díaz
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
| | - Elena Aguilar-Moñino
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
| | - Consuelo Sánchez-Rodrigo
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Ana-María González-Cuello
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - Emiliano Fernández-Villalba
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| | - María Trinidad Herrero
- Clinical and Experimental Neuroscience (NiCE), Institute for Aging Research (IUIE), School of Medicine, University of Murcia, 30100 Murcia, Spain; (L.C.-B.); (E.P.); (V.C.G.); (M.G.-D.); (E.A.-M.); (C.S.-R.); (A.-M.G.-C.)
- Biomedical Research Institute of Murcia (IMIB-Arrixaca), Campus Mare Nostrum, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|