1
|
Dors A, Panek R, Łużyński W, Janeczko K, Augustyniak A, Turlewicz-Podbielska H, Czyżewska-Dors E, Pomorska-Mól M. Effect of Vaccination Against E. coli, C. perfringens Type A/C on Piglet Productive and Clinical Parameters Under Field Conditions. Vaccines (Basel) 2024; 12:1185. [PMID: 39460351 PMCID: PMC11511424 DOI: 10.3390/vaccines12101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Background: One of the main strategies to control neonatal porcine diarrhoea (NPD) is through vaccination of the sows. This study aimed to compare the efficacy of two commercial vaccination schemes under field conditions on a farm where a C. perfringens type A cpb2-positive strain was implicated in NPD. Methods: This study was performed in a farrow-to-wean herd with 5500 sows, already using an E. coli and C. perfringens vaccine but still suffering NPD. Where the presence of a C. perfringens type A cpb2-positive strain was confirmed, Enteroporc Coli AC® (Ceva) was administrated to the sows in group A according to the manufacturer's instructions. Sows in group B were vaccinated using two other combined commercial vaccines. In each group, piglets from 10 litters were ear-tagged and individually weighed at birth and at 8 and 22 days of age. The incidence of diarrhoea, general piglet body condition, and antimicrobial treatment were recorded within 10 consecutive days after birth. Results: A total of 234 piglets (119 in group A and 115 in group B) were included. The mean weight gain of piglets from birth to 22 days of age was significantly higher in group A (4.99 kg) than in group B (4.66 kg) (p = 0.039). The rest of the recorded parameters such as the presence of diarrhoea, the piglet's body condition score, and the number of days with antimicrobial treatment did not differ significantly between groups. Conclusions: This study confirmed the efficiency of the Enteroporc Coli AC® vaccine in reducing clinical symptoms of diarrhoea in piglets, which was comparable with the other vaccines used in the study. The positive effect on piglets' productive performance during the lactation phase was observed.
Collapse
Affiliation(s)
- Arkadiusz Dors
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.A.); (H.T.-P.)
| | - Robert Panek
- Ceva Animal Health, 03-715 Warsaw, Poland; (R.P.); (K.J.)
| | | | | | - Agata Augustyniak
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.A.); (H.T.-P.)
| | - Hanna Turlewicz-Podbielska
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.A.); (H.T.-P.)
| | - Ewelina Czyżewska-Dors
- Department of Internal Diseases and Diagnostics, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznań, Poland;
| | - Małgorzata Pomorska-Mól
- Department of Preclinical Sciences and Infectious Diseases, Faculty of Veterinary Medicine and Animal Science, Poznan University of Life Sciences, 60-637 Poznań, Poland; (A.A.); (H.T.-P.)
| |
Collapse
|
2
|
Saha S, Namai F, Nishiyama K, Villena J, Kitazawa H. Role of immunomodulatory probiotics in alleviating bacterial diarrhea in piglets: a systematic review. J Anim Sci Biotechnol 2024; 15:112. [PMID: 39129013 PMCID: PMC11318305 DOI: 10.1186/s40104-024-01070-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/26/2024] [Indexed: 08/13/2024] Open
Abstract
Diarrhea is a common enteric disease in piglets that leads to high mortality and economic losses in swine production worldwide. Antibiotics are commonly used to prevent or treat diarrhea in piglets. However, irrational antibiotic use contributes to the development of resistance in bacteria and antibiotic residues in animal products, threatening public health, while causing gut microbiota dysbiosis and antibiotic-resistant bacterial infection in piglets. Therefore, the quest for alternative products (such as probiotics, prebiotics, organic acids, enzymes, essential oils, medium-chain fatty acids, zinc, and plant extracts) has recently been clearly emphasized through the increase in regulations regarding antibiotic use in livestock production. These antibiotic alternatives could lower the risk of antibiotic-resistant bacteria and meet consumer demand for antibiotic-free food. Several antibiotic alternatives have been proposed, including immunomodulatory probiotics, as candidates to reduce the need for antimicrobial therapy. Many studies have revealed that probiotics can avert and cure bacterial diarrhea by regulating the gut function and immune system of piglets. In this review, we focus on the major pathogenic bacteria causing piglet diarrhea, the research status of using probiotics to prevent and treat diarrhea, their possible mechanisms, and the safety issues related to the use of probiotics. Supplementation with probiotics is a possible alternative to antibiotics for the prevention or treatment of bacterial diarrhea in piglets. Furthermore, probiotics exert beneficial effects on feed efficiency and growth performance of piglets. Therefore, appropriate selection and strategies for the use of probiotics may have a positive effect on growth performance and also reduce diarrhea in piglets. This review provides useful information on probiotics for researchers, pig nutritionists, and the additive industry to support their use against bacterial diarrhea in piglets.
Collapse
Affiliation(s)
- Sudeb Saha
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh
| | - Fu Namai
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai, 980-8572, Japan
| | - Keita Nishiyama
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan
- Livestock Immunology Unit, International Education and Research Center for Food and Agricultural Immunology (CFAI), Tohoku University, Sendai, 980-8572, Japan
| | - Julio Villena
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Laboratory of Immunobiotechnology, Reference Centre for Lactobacilli (CERELA-CONICET), 4000, Tucuman, CP, Argentina.
| | - Haruki Kitazawa
- Food and Feed Immunology Group, Laboratory of Animal Food Function, Graduate School of Agricultural Science, Tohoku University, Sendai, 980-8572, Japan.
- Department of Dairy Science, Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet, 3100, Bangladesh.
| |
Collapse
|
3
|
Ruampatana J, Suwimonteerabutr J, Homyog K, Mekboonsonglarp W, Kanjanavaikoon K, der Veken WV, Poonyachoti S, Feyera T, Settachaimongkon S, Nuntapaitoon M. Clostridium butyricum Probiotic Feed Additive: Modulation of Sow Milk Metabolomics and Mitigation of Pre-Weaning Piglet Diarrhea. Animals (Basel) 2024; 14:2098. [PMID: 39061560 PMCID: PMC11273528 DOI: 10.3390/ani14142098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The present study aimed to investigate the impact of Clostridium butyricum probiotic feed additive on sow and piglet performances, together with alterations in the lipidomic and metabolomic profiles of sow milk. Sixty-four Landrace × Yorkshire crossbred sows and 794 piglets were included. Sows were divided into two groups; i.e., (i) conventional gestation diet (control; n = 35) and (ii) conventional diet added with 10 g/sow/day of probiotic C. butyricum spores (treatment; n = 29) from one week before the estimated farrowing day until weaning (29.6 ± 4.8 days). The sow and piglet performances and incidence of piglet diarrhea were recorded. Changes in gross chemical composition, fatty acid and non-volatile polar metabolite profiles of sow colostrum, transient milk and mature milk were evaluated. The results showed that relative backfat loss in the treatment group (-2.3%) was significantly lower than in control group (11.6%), especially in primiparous sows (p = 0.019). The application of C. butyricum probiotics in sows significantly reduced the incidence of diarrhea in piglets (p < 0.001) but no other effect on piglet performance was found. Lipidomic and metabolomic analyses revealed variations in sow colostrum and milk biomolecular profiles, with indicative compounds significantly altered by feeding with the C. butyricum probiotics. In conclusion, the use of C. butyricum probiotics in sows may improve sow body condition and reduce diarrhea incidence in piglets, with underlying changes in milk composition that warrant further investigation. These findings support the potential of C. butyricum as a beneficial feed additive in swine production.
Collapse
Affiliation(s)
- Jakavat Ruampatana
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
| | - Junpen Suwimonteerabutr
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kunaporn Homyog
- Center of Veterinary Diagnosis, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Center (STREC), Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | - Sutthasinee Poonyachoti
- Department of Physiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Takele Feyera
- Department of Animal Science and Veterinary Sciences, Aarhus University, AU-Viborg, DK-8830 Tjele, Denmark
| | - Sarn Settachaimongkon
- Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Omics Sciences and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Nuntapaitoon
- Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; (J.R.)
- Center of Excellence in Swine Reproduction, Department of Obstetrics, Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Liu J, Yang DA, Qu H, Liu D, Huang K. Bacillus subtilis Feed Supplementation Combined with Oral E. coli Immunization in Sows as a Tool to Reduce Neonatal Diarrhea in Piglets. Animals (Basel) 2024; 14:1978. [PMID: 38998090 PMCID: PMC11240787 DOI: 10.3390/ani14131978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
To investigate the effects of B. subtilis on the specific immune response of lactating sows to E. coli and the diarrhea rate in suckling piglets, thirty large white sows with similar farrowing dates were randomly divided into two groups: a feedback feeding (i.e., feeding a homogenate of intestinal contents and tissues from E. coli-infected piglets to sows; FB) group and a feedback feeding with B. subtilis (FB + BS) group. Serum, colostrum, and intestinal tissues from sows and piglets were collected to assess the immune response and intestinal barrier function at weaning. T and B cells from Peyer's patches (PPs) and mesenteric lymph nodes (MLNs) in lactating mice (with treatments consistent with the sows') were isolated to explore the underlying mechanism. The results showed that, compared with the FB group, the reproductive performance of sows and the growth performance of their offspring were effectively improved in the FB + BS group. Moreover, the levels of IgG/IgA and those of IgG/IgA against E. coli in the serum and colostrum of sows in the FB+BS group were increased (p < 0.05). Meanwhile, the ratio of CD4+/CD8+, CD4+CXCR5+PD1+, and B220+IgA+ cells in MLNs and PPs, and the IgA levels in the mammary glands of mice, were also increased in the FB + BS group (p < 0.05). Notably, in suckling piglets in the FB + BS group, the diarrhea rate was decreased (p < 0.05), and the intestinal barrier function and intestinal flora composition at weaning were significantly improved. Overall, these results indicated that B. subtilis feed supplementation combined with feedback feeding in pregnant and lactating sows can reduce diarrhea in suckling piglets by enhancing the maternal immune response against E. coli and intestinal barrier function in their offspring, improving survival rates and pre-weaning growth.
Collapse
Affiliation(s)
- Jianxin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Danchen Aaron Yang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Haobo Qu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Animal Nutritional Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Fang B, Zhao L, Huo B, Chen F, Yuan P, Lai S, Wu A, Zhuo Y. Maternal consumption of fish oil protected breast-fed piglets against Escherichia coli lipopolysaccharide-induced damage through reshaping of intestinal fatty acids profile. Front Vet Sci 2024; 11:1417078. [PMID: 38952807 PMCID: PMC11215148 DOI: 10.3389/fvets.2024.1417078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
It has been well documented that n-3 polyunsaturated fatty acids (n-3 PUFA) can alleviate inflammation caused by Escherichia coli (E. coli) lipopolysaccharides (LPS), the etiologic agents that causing yellow or white dysentery in young pigs. However, it remains unclear whether the increase in n-3 PUFA availability could enhance the ability of nursery pigs to resist invasion by E. coli. LPS. Twenty-four 21-day-old female piglets, each two of them from the same sow fed the beef tallow (BT) or fish oil (FO) diets, were allocated into four treatment groups: BT-CON, piglets from the BT-fed sows and intraperitoneally injected with saline (9 g/L); BT-LPS, piglets from the BT-fed sows and injected with LPS (100 μg/kg body weight); FO-CON, piglets from the FO-fed sows and injected with saline; FO-LPS, piglets from the FO-fed sows and injected with LPS. Following 2 h of LPS challenge, the magnitudes of increase in body temperature approached to a marked (p < 0.01) difference between the BT-CON and BT-LPS piglets, whereas the dramatic (p < 0.01) difference between the FO-CON and FO-LPS piglets was only observed at 4 h post LPS challenge. The body temperature averaged across the time points evaluated was about 0.2°C lower (p < 0.05) in the FO group than in the BT group. The FO group had lower (p < 0.05) mean corpuscular hemoglobin concentration, lower increase in serum interleukin (IL)-1β (p < 0.10) and IL-8 (p < 0.05) levels, higher (p < 0.01) serum albumin concentration, and higher (p = 0.10) ratios of jejunum villus height to crypt depth than the BT group. The FO group had much higher (p < 0.0001) ileal content of C20:5n3, C24:0, and C22:6n3, which were 2-4 times the content of the BT group. LPS challenge resulted in decreased (p < 0.05) intestinal C20:1 and C20:5n3 content, and the decrease (p < 0.05) in intestinal C20:3n6 and C24:1 content was observed in the BT-LPS piglets rather than in the FO-LPS piglets. Taken together, this study indicated that maternal consumption of fish oil protected breast-fed piglets against E. coli LPS-induced damage through reshaping of intestinal fatty acids profile, which sheds new light on the development of nutritional strategies to enhance the ability of young pigs to resist E. coli invasion.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Gao L, Shen H, Zhao S, Chen S, Zhu P, Lin W, Chen F. Isolation and Pathogenicity Analysis of a G5P[23] Porcine Rotavirus Strain. Viruses 2023; 16:21. [PMID: 38257722 PMCID: PMC10819142 DOI: 10.3390/v16010021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/17/2023] [Indexed: 01/24/2024] Open
Abstract
(1) Background: Group A rotaviruses (RVAs) are the primary cause of severe intestinal diseases in piglets. Porcine rotaviruses (PoRVs) are widely prevalent in Chinese farms, resulting in significant economic losses to the livestock industry. However, isolation of PoRVs is challenging, and their pathogenicity in piglets is not well understood. (2) Methods: We conducted clinical testing on a farm in Jiangsu Province, China, and isolated PoRV by continuously passaging on MA104 cells. Subsequently, the pathogenicity of the isolated strain in piglets was investigated. The piglets of the PoRV-infection group were orally inoculated with 1 mL of 1.0 × 106 TCID50 PoRV, whereas those of the mock-infection group were fed with an equivalent amount of DMEM. (3) Results: A G5P[23] genotype PoRV strain was successfully isolated from one of the positive samples and named RVA/Pig/China/JS/2023/G5P[23](JS). The genomic constellation of this strain was G5-P[23]-I5-R1-C1-M1-A8-N1-T1-E1-H1. Sequence analysis revealed that the genes VP3, VP7, NSP2, and NSP4 of the JS strain were closely related to human RVAs, whereas the remaining gene segments were closely related to porcine RVAs, indicating a reassortment between porcine and human strains. Furthermore, infection of 15-day-old piglets with the JS strain resulted in a diarrheal rate of 100% (8 of 8) and a mortality rate of 37.5% (3 of 8). (4) Conclusions: The isolated G5P[23] genotype rotavirus strain, which exhibited strong pathogenicity in piglets, may have resulted from recombination between porcine and human strains. It may serve as a potential candidate strain for developing vaccines, and its immunogenicity can be tested in future studies.
Collapse
Affiliation(s)
- Liguo Gao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Hanqin Shen
- Wen’s Food Group, Yunfu 527300, China;
- Guangdong Jingjie Inspection and Testing Co., Ltd., Yunfu 527300, China
| | - Sucan Zhao
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Sheng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Puduo Zhu
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Wencheng Lin
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| | - Feng Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (L.G.); (S.Z.); (S.C.); (P.Z.); (W.L.)
| |
Collapse
|
7
|
Boulbria G, Teixeira Costa C, Amenna-Bernard N, Labrut S, Normand V, Nicolazo T, Chocteau F, Chevance C, Jeusselin J, Brissonnier M, Lebret A. Microbiological Findings and Associated Histopathological Lesions in Neonatal Diarrhoea Cases between 2020 and 2022 in a French Veterinary Pig Practice. Vet Sci 2023; 10:vetsci10040304. [PMID: 37104459 PMCID: PMC10143693 DOI: 10.3390/vetsci10040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
This retrospective study described the aetiologies of neonatal diarrhoea cases and their associations with histological findings. A total of 106 diarrhoeic neonatal piglets were selected. Cultures, MALDI typings, PCRs and evaluation of intestinal lesions were performed. A total of 51 cases (48.1%) were positive for only one pathogen and 54 (50.9%) were positive for more than one pathogen. Clostridium perfringens type A was the most frequently detected pathogen (61.3%), followed by Enterococcus hirae (43.4%), rotavirus type A (38.7%), rotavirus type C (11.3%) and enterotoxigenic Escherichia coli (3.8%). Only lesions in the small intestine were correlated with detected pathogens. The detection of rotavirus was associated with an increased probability of observing villous atrophy (p < 0.001), crypt hyperplasia (p = 0.01) and leucocyte necrosis in the lamina propria (p = 0.05). The detection of Clostridium perfringens type A was associated with an increased probability of observing bacilli in close proximity to the mucosa (p < 0.001) and a decreased probability of observing epithelial necrosis (p = 0.04). Detection of Enterococcus hirae was associated with an increased probability of observing enteroadherent cocci (p < 0.001). Multivariate regression logistic models revealed that epithelial necrosis was more likely to occur in Enterococcus hirae-positive piglets (p < 0.02) and neutrophilic infiltrate was more likely to occur in Clostridium perfringens type A- and Enterococcus hirae-positive piglets (p = 0.04 and p = 0.02, respectively).
Collapse
Affiliation(s)
- Gwenaël Boulbria
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | | | | | | | - Valérie Normand
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | - Théo Nicolazo
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
| | - Florian Chocteau
- CRCI2NA, INSERM U1307, CNRS UMR6075, Nantes University, 44007 Nantes, France
| | - Céline Chevance
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | - Justine Jeusselin
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| | | | - Arnaud Lebret
- REZOOLUTION Pig Consulting Services, 56920 Noyal-Pontivy, France
- PORC.SPECTIVE Swine Vet Practice, 56920 Noyal-Pontivy, France
| |
Collapse
|
8
|
Eriksen EØ. A Systematic Review: Is Porcine Kobuvirus Causing Gastrointestinal Disease in Young Pigs? Vet Sci 2023; 10:286. [PMID: 37104441 PMCID: PMC10144032 DOI: 10.3390/vetsci10040286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Since porcine kobuvirus (PKV) was first described in 2008, researchers have speculated whether the virus is of clinical importance. This systematic literature review answers the question: Is porcine kobuvirus a cause of gastrointestinal disease in young pigs? A case-control study showed that PKV was not associated with neonatal diarrhea. A cohort study suffered from a very small sample size (n = 5), and in an experimental trial, the effect of PKV inoculation could not be separated from the effect of being inoculated with porcine epidemic diarrhea virus. In 13 poorly defined observational studies, more than 4000 young pigs had been assigned a diarrhea status and their feces analyzed for PKV. Unfortunately, the studies lacked well-characterized unbiased samples, and thus the strongest possible inference from these studies was that a very strong association between PKV and diarrhea is unlikely. PKV was commonly detected in non-diarrheic pigs, and this could indicate that PKV is not a sufficient cause in itself or that reinfection of individuals with some immunological protection due to previous infections is common. Conclusively, there is a lack of good evidence of PKV being a cause of gastrointestinal disease, but the sparse available evidence suggests that PKV is of limited clinical importance.
Collapse
Affiliation(s)
- Esben Østergaard Eriksen
- Section for Production, Nutrition and Health, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| |
Collapse
|
9
|
Yin H, Liu W, Ji X, Yan G, Zeng X, Zhao W, Wang Y. Study on the mechanism of Wumei San in treating piglet diarrhea using network pharmacology and molecular docking. Front Vet Sci 2023; 10:1138684. [PMID: 36925608 PMCID: PMC10011153 DOI: 10.3389/fvets.2023.1138684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Wumei San (WMS) is a traditional Chinese medicine that has been widely applied in the treatment of piglet diarrhea (PD). However, the mechanism of WMS in PD has not been investigated. In this study, the main active compounds of WMS and the target proteins were obtained from the Traditional Chinese Medicine Systematic Pharmacology, PubChem, and SwissTargetPrediction databases. The molecular targets of PD were identified using GeneCards, OMIM, and NCBI databases. The common targets of WMS and PD were screened out and converted into UniProt gene symbols. PD-related target genes were constructed into a protein-protein interaction network, which was further analyzed by the STRING online database. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to construct the component-target gene-disease network. Molecular docking was then used to examine the relationship between the core compounds and proteins. As a result, a total of 32 active compounds and 638 target genes of WMS were identified, and a WMS-compound-target network was successfully constructed. Through network pharmacology analysis, 14 core compounds in WMS that showed an effect on PD were identified. The targets revealed by GO and KEGG enrichment analysis were associated with the AGE-RAGE signaling pathway, PI3K-Akt signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway, IL-17 signaling pathway, and other pathways and physiological processes. Molecular docking analysis revealed that the active compounds in WMS spontaneously bind to their targets. The results indicated that WMS may regulate the local immune response and inflammatory factors mainly through the TNF signaling pathway, IL-17 signaling pathway, and other pathways. WMS is a promising treatment strategy for PD. This study provides new insights into the potential mechanism of WMS in PD.
Collapse
Affiliation(s)
- Huihui Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wei Liu
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
- *Correspondence: Wei Liu ✉
| | - Xiaoyu Ji
- Brain Function and Disease Laboratory, Shantou University Medical College, Shantou, Guangdong, China
| | - Guoqing Yan
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Xueyan Zeng
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Wu Zhao
- Guangxi Key Laboratory of Veterinary Biotechnology, Key Laboratory of China (Guangxi)-ASEAN Cross-Border Animal Disease Prevention and Control, Ministry of Agriculture and Rural Affairs of China, Guangxi Veterinary Research Institute, Nanning, China
| | - Yanhua Wang
- Guangxi Mountain Comprehensive Technology Development Center, Nanning, China
| |
Collapse
|