1
|
Olăreț E, Dinescu S, Dobranici AE, Ginghină RE, Voicu G, Mihăilescu M, Curti F, Banciu DD, Sava B, Amarie S, Lungu A, Stancu IC, Mastalier BSM. Osteoblast responsive biosilica-enriched gelatin microfibrillar microenvironments. BIOMATERIALS ADVANCES 2024; 161:213894. [PMID: 38796956 DOI: 10.1016/j.bioadv.2024.213894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
Engineering of scaffolds for bone regeneration is often inspired by the native extracellular matrix mimicking its composite fibrous structure. In the present study, we used low loadings of diatomite earth (DE) biosilica to improve the bone regeneration potential of gelatin electrospun fibrillar microenvironments. We explored the effect of increasing the DE content from 1 % to 3 % and 5 %, respectively, on the physico-chemical properties of the fibrous scaffolds denoted FG_DE1, FG_DE3, FG_DE5, regarding the aqueous media affinity, stability under simulated physiological conditions, morphology characteristics, and local mechanical properties at the surface. The presence of biosilica generated composite structures with lower swelling degrees and higher stiffness when compared to gelatin fibers. Increasing DE content led to higher Young modulus, while the stability of the protein matrix in PBS, at 37 °C, over 21 was significantly decreased by the presence of diatomite loadings. The best preosteoblast response was obtained for FG_DE3, with enhanced mineralization during the osteogenic differentiation when compared to the control sample without diatomite. 5 % DE in FG_DE5 proved to negatively influence cells' metabolic activity and morphology. Hence, the obtained composite microfibrillar scaffolds might find application as osteoblast-responsive materials for bone tissue engineering.
Collapse
Affiliation(s)
- Elena Olăreț
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; Research Institute of the University of Bucharest (ICUB), 050663 Bucharest, Romania
| | - Alexandra-Elena Dobranici
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Raluca-Elena Ginghină
- Research and Innovation Center for CBRN Defense and Ecology, 041327 Bucharest, Romania
| | - Georgeta Voicu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Mona Mihăilescu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
| | - Filis Curti
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Zentiva SA, 50, Theodor Pallady, 032266 Bucharest, Romania
| | - Daniel Dumitru Banciu
- Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | | | | | - Adriana Lungu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania
| | - Izabela-Cristina Stancu
- Advanced Polymer Materials Group, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; Faculty of Medical Engineering, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania.
| | - Bogdan Stelian Manolescu Mastalier
- University of Medicine and Pharmacy Carol Davila, Bucharest, Romania; Department of General Surgery, Colentina Clinical Hospital, 072202 Bucharest, Romania
| |
Collapse
|
2
|
Simakova IL, Mäki-Arvela P, Martínez-Klimov M, Muller J, Vajglová Z, Peurla M, Eränen K, Murzin DY. One-Pot Synthesis of Menthol Starting from Citral over Ni Supported on Attapulgite-H-Beta-38 Extrudates in a Continuous Flow: Effect of Metal Location. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irina L. Simakova
- Boreskov Institute of Catalysis, pr. Ak. Lavrentieva 5, Novosibirsk, Russia 630090
| | - Päivi Mäki-Arvela
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, 20500 Turku/Åbo, Finland
| | - Mark Martínez-Klimov
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, 20500 Turku/Åbo, Finland
| | - Joseph Muller
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, 20500 Turku/Åbo, Finland
| | - Zuzana Vajglová
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, 20500 Turku/Åbo, Finland
| | - Markus Peurla
- Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland
| | - Kari Eränen
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, 20500 Turku/Åbo, Finland
| | - Dmitry Yu. Murzin
- Åbo Akademi University, Johan Gadolin Process Chemistry Centre, Henriksgatan 2, 20500 Turku/Åbo, Finland
| |
Collapse
|
3
|
Synthesis, Characterization and Adsorption of Bisphenol A Using Novel Hybrid Materiel Produced from PANI Matrix Reinforced by Kieselguhr. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02151-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Dehghankar M, Mohammadi T, Tavakolmoghadam M, Tofighy MA. Polyvinylidene Fluoride/Nanoclays (Cloisite 30B and Palygorskite) Mixed Matrix Membranes with Improved Performance and Antifouling Properties. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Mona Dehghankar
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Toraj Mohammadi
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| | - Maryam Tavakolmoghadam
- Polymer, Chemical and Petrochemical Science and Technology Division, Research Institute of Petroleum Industry, Tehran 1485733111, Iran
| | - Maryam Ahmadzadeh Tofighy
- Research and Technology Center of Membrane Processes, Department of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Narmak, 16846 Tehran, Iran
- Center of Excellence for Membrane Science and Technology, Iran University of Science and Technology (IUST), Narmak, Tehran 16846, Iran
| |
Collapse
|
5
|
Han J, Hua X, Zhou X, Xu B, Wang H, Huang G, Xu Y. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2021; 333:125157. [PMID: 33878501 DOI: 10.1016/j.biortech.2021.125157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Xylonic acid (XA), as a bio-based platform chemical, is of considerable interest for xylose bioconversion. The whole-cell catalysis of Gluconobacter oxydans presents a promising application potential, while the hard works of cell culture still severely hinder XA business from the crude toxics-containing lignocellulosic hydrolysate. Hence, the bacterial cells should be recycled to reduce commercial production cost. The implementation of diatomite detoxification not only absorbs most of the degraded inhibitors in hydrolysate, but also confines the sugar contents loss with 10% and allows the bacterial cells to maintain 90% bioconversion performance during cell-recycling operation. Additionally, a scale-up of XA bioproduction was achieved in a sealed oxygen supply fermenter. Finally, 210 g XA was produced from 1000 g corncob originated hydrolysate within 24 h of whole-cell catalysis. Diatomite treatment provides an efficient and cost-practical approach for the commercial bioproduction of biochemicals like XA from lignocellulosic biomass.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Bin Xu
- ECO Zhuoxin Energy-saving Technology (Shanghai) Company Limited, Shanghai 200000, People's Republic of China
| | - Huan Wang
- ECO Zhuoxin Energy-saving Technology (Shanghai) Company Limited, Shanghai 200000, People's Republic of China
| | - Guohong Huang
- Nanjing Hydraulic Research Institute, Materials & Structural Engineering Department, Nanjing 210029, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
6
|
Mujtaba M, Fernández-Marín R, Robles E, Labidi J, Yilmaz BA, Nefzi H. Understanding the effects of copolymerized cellulose nanofibers and diatomite nanocomposite on blend chitosan films. Carbohydr Polym 2021; 271:118424. [PMID: 34364565 DOI: 10.1016/j.carbpol.2021.118424] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/20/2021] [Accepted: 07/07/2021] [Indexed: 01/11/2023]
Abstract
Chitosan films lack various important physicochemical properties and need to be supplemented with reinforcing agents to bridge the gap. Herein, we have produced chitosan composite films supplemented with copolymerized (with polyacrylonitrile monomers) cellulose nanofibers and diatomite nanocomposite at different concentrations. The incorporation of CNFs and diatomite enhanced the physicochemical properties of the films. The mechanical characteristics and hydrophobicity of the films were observed to be improved after incorporating the copolymerized CNFs/diatomite composite at different concentrations (CNFs: 1%, 2% and 5%; diatomite: 10% and 30%). The antioxidant activity gradually increased with an increasing concentration (1-5% and 10-30%) of copolymerized CNFs/diatomite composite in the chitosan matrix. Moreover, the water solubility decreased from 30% for chitosan control film (CH-0) to 21.06% for films containing 30% diatomite and 5% CNFs (CNFs-D30-5). The scanning electron micrographs showed an overall uniform distribution of copolymerized CNFs/diatomite composite in the chitosan matrix with punctual agglomerations.
Collapse
Affiliation(s)
- Muhammad Mujtaba
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, FI-00076 Aalto, Finland; Institute of Biotechnology, Ankara University, Ankara 06110, Turkey; Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain.
| | - Rut Fernández-Marín
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Eduardo Robles
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain; University of Pau and the Adour Region, E2S UPPA, CNRS, Institute of Analytical and Physicochemical Sciences for the Environment and Materials (IPREM-UMR 5254), 371 Rue du Ruisseau, 40004 Mont de Marsan, France
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of the Basque Country UPV/EHU, Plaza Europa 1, 20018 Donostia-San Sebastián, Spain
| | - Bahar Akyuz Yilmaz
- Department of Biotechnology and Molecular Biology, Faculty of Science and Letters, Aksaray University, 68100 Aksaray, Turkey
| | - Houwaida Nefzi
- Laboratory of Materials, Molecules and Applications, IPEST, Preparatory Institute of Scientific and Technical Studies of Tunis, Tunisia
| |
Collapse
|
7
|
Zhang L, Cao F, Sun J, Sun Y. The synergistic effect of attapulgite in the highly enhanced photoreduction of Cr(VI) by oxalic acid in aqueous solution. ENVIRONMENTAL RESEARCH 2021; 197:111070. [PMID: 33794174 DOI: 10.1016/j.envres.2021.111070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/08/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Attapulgite (ATP), a widely existed clay in nature, was firstly and successfully applied to enhance the photoreduction of highly toxic Cr(VI) by oxalic acid (Ox). In ATP + Ox + UV system, batch effects (Ox concentration, initial Cr(VI) concentration, ATP dosage, and reusability of ATP) were investigated. By studying the impact of the initial pH in the solution, the change of pH and Fe species concentration as well as Ox concentration during the reaction, the free radical scavenging test, and the role of ATP, the mechanism of Cr(VI) removal by ATP + Ox + UV system was revealed. The methyl orange (MO) removal of ATP + Ox + UV system was also inspected. The results indicated that ATP showed the obvious enhancement in efficient photoreduction of Cr(VI) by Ox in water. The Fe and Si components in ATP played an important role in Cr(VI) removal by ATP + Ox + UV system: most of Cr(VI) was reduced by Fe(II) and CO2•‒ produced by the Fe(III)-Ox complex from the dissolved Fe component in ATP under UV irradiation. Some of Cr(VI) was reduced by e- and CO2•‒ from the oxidation of Ox by h+ generated by the photocatalyzed SiO2 in ATP. Furthermore, ATP + Ox + UV system also showed excellent MO removal performance, indicating the great potential in practical applications.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Fengming Cao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jie Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yanqing Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
8
|
Naturally available diatomite and their surface modification for the removal of hazardous dye and metal ions: A review. Adv Colloid Interface Sci 2020; 282:102198. [PMID: 32579950 DOI: 10.1016/j.cis.2020.102198] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022]
Abstract
The presence of toxic pollutants such as dyes and metal ions at higher concentrations in water is very harmful to the environment. Removal of these pollutants using diatomaceous earth or diatomite (DE) and surface-modified DE has been extensively explored due to their excellent physio-chemical properties and low cost. Therefore, naturally available DE being inexpensive, their surface modified adsorbents could be one of the potential candidates for the wastewater treatment in the future. In this context, the current review has been summarized for the removal of both pollutants i.e., dyes and metal ions by surface-modified DE using the facile adsorption process. In addition, this review is prominently focused on the various modification process of DE, their cost-effectiveness; the physio-chemical characteristics and their maximum adsorption capacity. Further, real-time scenarios of reported adsorbents were tabulated based on the cost of the process along with the adsorption capacity of these adsorbents.
Collapse
|
9
|
Tetgure SR, Choudhary BC, Borse AU, Garole DJ. Column and batch sorption investigations of nickel(II) on extractant-impregnated resin. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:27291-27304. [PMID: 31321729 DOI: 10.1007/s11356-019-05883-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 07/01/2019] [Indexed: 06/10/2023]
Abstract
Macroporous resin-supported reagents have been identified as potential adsorbents for removal of toxic pollutants. This article presents an experimental designed to evaluate the sorption and desorption of nickel(II) with the help of column and batch procedure using simple extractant-impregnated resin (EIR). Isonitroso-4-methyl-2-pentanone (IMP) as an extractant was impregnated on a solid support like Amberlite XAD-4 to prepare the EIR sorbent. Column experimental conditions such as pH, sample flow rate and volume, eluting solution, and interfering ions were studied to optimize the nickel(II) sorption and recovery from aqueous media. The column results suggest that the quantitative nickel(II) sorption was observed at pH 5-6, and the quantitative recovery (≥ 95%) was achieved by using 1.0 M HNO3. The high concentrations of cations and anions (except EDTA) present in the spiked binary and multi-element mixture solution show no interferences in both quantitative sorption and recovery of nickel(II), whereas the batch experiments were performed to evaluate nickel(II) sorption behavior using the linearized and non-linearized kinetic and isotherm models. By error function analysis, the Freundlich isotherm and the pseudo-first-order kinetic model were found to describe best the experimental data obtained over the studied concentration range and sorption time, respectively. The maximum sorption capacity of nickel(II) onto the EIR sorbent was found to be ~ 81 mg/g. The mean free energy (E = 10.1 kJ/mol) determined using Dubinin-Radushkevich isotherm suggests chemical nature of nickel(II) sorption on EIR. The novelty of the EIR adsorbent lies in its potential for separation and recovery of nickel(II) at trace level in water samples of different origin.
Collapse
Affiliation(s)
- Sandesh R Tetgure
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, 425001, India
| | - Bharat C Choudhary
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, 425001, India
| | - Amulrao U Borse
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, 425001, India.
| | - Dipak J Garole
- School of Chemical Sciences, Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon, Maharashtra, 425001, India.
- Directorate of Geology and Mining, Government of Maharashtra, Nagpur, Maharashtra, 440010, India.
| |
Collapse
|