1
|
Clemente E, Domingues E, Quinta-Ferreira RM, Leitão A, Martins RC. Solar photo-Fenton and persulphate-based processes for landfill leachate treatment: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169471. [PMID: 38145668 DOI: 10.1016/j.scitotenv.2023.169471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 12/27/2023]
Abstract
Landfilling is the most usual solid waste management strategy for solid residues disposal. However, it entails several drawbacks such as the generation of landfill leachate that seriously threaten human life and the environment due to their toxicity and carcinogenic character. Among various technologies, solar photo-Fenton and sulphate-based processes have proven to be suitable for the treatment of these polluted streams. This review critically summarises the last three decades of studies in this field. It is found that the solar homogeneous photo-Fenton process should be preferably used as a pre- and post-treatment of biological technologies and as a standalone treatment for young, medium, and mature leachates, respectively. Studies on heterogeneous solar photo-Fenton process are lacking so that this technology may be scaled-up for industrial applications. Sulphate radicals are attractive for removing both COD and ammonia. However, no study has been reported on solar sulphate activation for landfill leachate treatment. This review discusses the main advances and challenges on treating landfill leachate through solar AOPs, it compares solar photo-Fenton and solar persulphate-based treatments, indicates the future research directions and contributes for a better understanding of these technologies towards sustainable treatment of landfill leachate in sunny and not-so-sunny regions.
Collapse
Affiliation(s)
- E Clemente
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal; LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - E Domingues
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - R M Quinta-Ferreira
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - A Leitão
- LESRA - Laboratory of Separation, Reaction and Environmental Engineering, Faculty of Engineering, Agostinho Neto University, Av. Ho Chi Min no 201, Luanda, Angola
| | - R C Martins
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| |
Collapse
|
2
|
An experimental study on the pretreatment of lignite upgrading wastewater using the Fenton oxidation method. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Ahmed Z, Yusoff MS, Kamal NHM, Aziz HA. Optimization of the humic acid separation and coagulation with natural starch by RSM for the removal of COD and colour from stabilized leachate. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:1396-1405. [PMID: 33928820 DOI: 10.1177/0734242x211012775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The removal of concentrated colour (around 5039 Pt-Co) and chemical oxygen demand (COD; around 4142 mg L-1) from matured landfill leachate through a novel combination of humic acid extraction and coagulation with natural oil palm trunk starch (OPTS) was investigated in this study. Central composite design from response surface methodology of Design Expert-10 software executed the experimental design to correlate experimental factors with desired responses. Analysis of variance developed the quadratic model for four factors (e.g. coagulant dosage, slow mixing speed and time and centrifugation duration) and two responses (% removal of colour, COD). The model confirmed the highest colour (84.96%) and COD (48.84%) removal with a desirability function of 0.836 at the optimum condition of 1.68 g L-1 coagulant dose, 19.11 rpm slow mixing speed, 16.43 minutes for mixing time and 35.75 minutes for centrifugation duration. Better results of correlation coefficient (R2 = 0.98 and 0.96) and predicted R2 (0.94 and 0.84) indicates the model significance. Electron microscopic images display the amalgamation of flocs through bridging. Fourier transforms infrared spectra confirmed the existence of selected organic groups in OPTS, which eventually signifies the applied method.
Collapse
Affiliation(s)
- Zaber Ahmed
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Mohd Suffian Yusoff
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | | | - Hamidi Abdul Aziz
- School of Civil Engineering, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| |
Collapse
|
4
|
Babaei S, Sabour MR, Moftakhari Anasori Movahed S. Combined landfill leachate treatment methods: an overview. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:59594-59607. [PMID: 34510344 DOI: 10.1007/s11356-021-16358-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Landfill leachate is commonly heavily contaminated and consists of high amount of organic compounds, inorganic salts, toxic gases, halogenated hydrocarbons, and heavy metals that exerts a serious threat to public health and the environment. Thus, it requires treatments before direct release into receiving waters. Selecting the efficient method for leachate treatment is still a major challenge. While physicochemical treatment methods such as coagulation-flocculation, adsorption, membrane filtration, ozonation, air stripping, and advanced oxidation processes (AOP) are appropriate for mature leachate, young leachate requires biological treatments including membrane bioreactor (MBR), activated sludge (AS), upflow anaerobic sludge blanket (UASB), and rotational biological contactor (RBC). Recently, the integration of biological processes and physicochemical methods has been demonstrated to be very efficient. It is found that combined coagulation-flocculation/nanofiltration and activated sludge/reverse osmosis are more efficacious than other integrated physicochemical methods and combined physicochemical/biological methods, respectively.
Collapse
Affiliation(s)
- Shamimeh Babaei
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Mohammad Reza Sabour
- Faculty of Civil Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | | |
Collapse
|
5
|
Tejera J, Hermosilla D, Gascó A, Negro C, Blanco Á. Combining Coagulation and Electrocoagulation with UVA-LED Photo-Fenton to Improve the Efficiency and Reduce the Cost of Mature Landfill Leachate Treatment. Molecules 2021; 26:molecules26216425. [PMID: 34770834 PMCID: PMC8587920 DOI: 10.3390/molecules26216425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/07/2022] Open
Abstract
This study focused on the reduction of the treatment cost of mature landfill leachate (LL) by enhancing the coagulation pre-treatment before a UVA-LED photo-Fenton process. A more efficient advanced coagulation pretreatment was designed by combining conventional coagulation (CC) and electro-coagulation (EC). Regardless of the order in which the two coagulations were applied, the combination achieved more than 73% color removal, 80% COD removal, and 27% SUVA removal. However, the coagulation order had a great influence on both final pH and total dissolved iron, which were key parameters for the UVA-LED photo-Fenton post-treatment. CC (pH = 5; 2 g L-1 of FeCl36H2O) followed by EC (pH = 5; 10 mA cm-2) resulted in a pH of 6.4 and 100 mg L-1 of dissolved iron, whereas EC (pH = 4; 10 mA cm-2) followed by CC (pH = 6; 1 g L-1 FeCl36H2O) led to a final pH of 3.4 and 210 mg L-1 dissolved iron. This last combination was therefore considered better for the posterior photo-Fenton treatment. Results at the best cost-efficient [H2O2]:COD ratio of 1.063 showed a high treatment efficiency, namely the removal of 99% of the color, 89% of the COD, and 60% of the SUVA. Conductivity was reduced by 17%, and biodegradability increased to BOD5:COD = 0.40. With this proposed treatment, a final COD of only 453 mg O2 L-1 was obtained at a treatment cost of EUR 3.42 kg COD-1.
Collapse
Affiliation(s)
- Javier Tejera
- Department of Chemical Engineering and Materials, Chemistry Science Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.T.); (Á.B.)
| | - Daphne Hermosilla
- Department of Forest and Environmental Engineering and Management, E.T.S.I. Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (D.H.); (A.G.)
- Department of Agricultural and Forest Engineering, EIFAB, Campus Duques de Soria, University of Valladolid, 42005 Soria, Spain
| | - Antonio Gascó
- Department of Forest and Environmental Engineering and Management, E.T.S.I. Montes, Forestal y del Medio Natural, Universidad Politécnica de Madrid, 28040 Madrid, Spain; (D.H.); (A.G.)
| | - Carlos Negro
- Department of Chemical Engineering and Materials, Chemistry Science Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.T.); (Á.B.)
- Correspondence:
| | - Ángeles Blanco
- Department of Chemical Engineering and Materials, Chemistry Science Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (J.T.); (Á.B.)
| |
Collapse
|
6
|
Impact of Effluent from the Leachate Treatment Plant of Taman Beringin Solid Waste Transfer Station on the Quality of Jinjang River. Processes (Basel) 2020. [DOI: 10.3390/pr8121553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Rapid population growth has contributed to increased solid waste generated in Malaysia. Most landfills that have reached the design capacity are now facing closure. Taman Beringin Landfill was officially closed, so the Taman Beringin Solid Waste Transfer Station was built to manage the relocation, consolidation, and transportation of solid waste to Bukit Tagar Sanitary Landfill. Leachates are generated as a consequence of rainwater percolation through waste and biochemical processes in waste cells. Leachate treatment is needed, as leachates cause environmental pollution and harm human health. This study investigates the impact of treated leachate discharge from a Leachate Treatment Plant (LTP) on the Jinjang River water quality. The performance of the LTP in Taman Beringin Solid Waste Transfer Station was also assessed. Leachate samples were taken at the LTP’s anoxic tank, aeration tank, secondary clarifier tank, and final discharge point, whereas river water samples were taken upstream and downstream of Jinjang River. The untreated leachate returned the following readings: biochemical oxygen demand (BOD) (697.50 ± 127.94 mg/L), chemical oxygen demand (COD) (2419.75 ± 1155.22 mg/L), total suspended solid (TSS) (2710.00 ± 334.79 mg/L), and ammonia (317.08 ± 35.45 mg/L). The LTP’s overall performance was satisfactory, as the final treated leachates were able to meet the standard requirements of the Environmental Quality (Control of Pollution from Solid Waste Transfer Station and Landfill) Regulation 2009. However, the LTP’s activated sludge system performance was not satisfactory, and the parameters did not meet the standard limits. The result shows a low functioning biological treatment method that could not efficiently treat the leachate. However, a subsequent step of combining the biological and chemical process (coagulation, flocculation, activated sludge system, and activated carbon adsorption) helped the treated leachate to meet the standard B requirement stipulated by the Department of Environment (DOE), i.e., to flow safely into the river. This study categorized Jinjang River as polluted, with the discharge of the LTP’s treated leachates, possibly contributing to the river pollution. However, other factors, such as the upstream sewage treatment plant and the ex-landfill downstream, may have also affected the river water quality. The LTP’s activated sludge system performance at the transfer station still requires improvement to reduce the cost of the chemical treatment.
Collapse
|