1
|
Zhang Y, Du J, Ding Y, Wu L, Ao T. Discrepancies in precipitation changes over the Southwest River Basin of China based on ISIMIP3b. Sci Rep 2024; 14:22428. [PMID: 39342027 PMCID: PMC11439065 DOI: 10.1038/s41598-024-73741-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024] Open
Abstract
Selecting appropriate global climate models (GCMs) is crucial for minimizing uncertainty in regional climate projections under future scenarios. Previous studies have predominantly assessed the modeling capability of GCMs for regional precipitation climatology and its long-term patterns based on annual and seasonal precipitation data. Building upon these, we primally evaluated the performance of five GCMs from phase 3b of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP3b) in simulating precipitation concentration and its variations in the Southwest River Basin (SWRB) of China using the precipitation concentration index (PCI). The results indicate that: (1) The 5 GCMs generally capture the spatial distribution of annual average precipitation in the SWRB but significantly overestimate its magnitude, with a maximum regional average deviation of 207.80 mm. Furthermore, all models tend to overestimate the overall drying trend in the SWRB and show limited capability in simulating interdecadal variations of annual precipitation. (2) While the 5 GCMs reasonably simulate the spatial distribution of annual average PCI in the SWRB, they tend to overestimate its values, with a maximum regional average deviation of 1.54. Additionally, their simulation performance in capturing PCI trends and interdecadal variations is also limited. (3) The 5 GCMs tend to overestimate seasonal precipitation in the SWRB, with the best simulation performance for the distribution of autumn precipitation, followed by spring and summer, and the poorest for winter. Significant differences exist in the simulation performance of the models for seasonal precipitation proportions, which result in discrepancies in the models' representation of PCI. Moreover, the models' poor simulation performance of PCI trends is partly due to their inadequate modeling of trends in seasonal precipitation proportions. The findings will contribute to laying the foundation for meteorological hydrological research and water resource management in the SWRB.
Collapse
Affiliation(s)
- Yunkai Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
| | - Juan Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yibo Ding
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China
- Yellow River Engineering Consulting Co., Ltd, Zhengzhou, 450003, China
| | - Lingling Wu
- Sichuan Hydrological and Water Resources Survey Center, Chengdu, 611130, China
| | - Tianqi Ao
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
- Institute for Disaster Management and Reconstruction, Sichuan University-Hong Kong Polytechnic University, Chengdu, 610065, China.
| |
Collapse
|
2
|
Ma L, Wu DY, Wang Y, Hall JM, Mi CR, Xie HX, Tao WJ, Hou C, Cheng KM, Zhang YP, Wang JC, Lu HL, Du WG, Sun BJ. Collective effects of rising average temperatures and heat events on oviparous embryos. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2024; 38:e14266. [PMID: 38578127 DOI: 10.1111/cobi.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 04/06/2024]
Abstract
Survival of the immobile embryo in response to rising temperature is important to determine a species' vulnerability to climate change. However, the collective effects of 2 key thermal characteristics associated with climate change (i.e., rising average temperature and acute heat events) on embryonic survival remain largely unexplored. We used empirical measurements and niche modeling to investigate how chronic and acute heat stress independently and collectively influence the embryonic survival of lizards across latitudes. We collected and bred lizards from 5 latitudes and incubated their eggs across a range of temperatures to quantify population-specific responses to chronic and acute heat stress. Using an embryonic development model parameterized with measured embryonic heat tolerances, we further identified a collective impact of embryonic chronic and acute heat tolerances on embryonic survival. We also incorporated embryonic chronic and acute heat tolerance in hybrid species distribution models to determine species' range shifts under climate change. Embryos' tolerance of chronic heat (T-chronic) remained consistent across latitudes, whereas their tolerance of acute heat (T-acute) was higher at high latitudes than at low latitudes. Tolerance of acute heat exerted a more pronounced influence than tolerance of chronic heat. In species distribution models, climate change led to the most significant habitat loss for each population and species in its low-latitude distribution. Consequently, habitat for populations across all latitudes will shift toward high latitudes. Our study also highlights the importance of considering embryonic survival under chronic and acute heat stresses to predict species' vulnerability to climate change.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dan-Yang Wu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yang Wang
- School of Biological Sciences, Hebei Normal University, Shijiazhuang, China
| | - Joshua M Hall
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee, USA
| | - Chun-Rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Jie Tao
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Chao Hou
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Kun-Ming Cheng
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Yong-Pu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou, China
| | - Ji-Chao Wang
- Key Laboratory for Ecology of Tropical Islands, College of Life Sciences, Ministry of Education, Hainan Normal University, Haikou, China
| | - Hong-Liang Lu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, Hangzhou Normal University, Hangzhou, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bao-Jun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Salaudeen A, Shahid S, Ismail A, Adeogun BK, Ajibike MA, Bello AAD, Salau OBE. Adaptation measures under the impacts of climate and land-use/land-cover changes using HSPF model simulation: Application to Gongola river basin, Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159874. [PMID: 36334669 DOI: 10.1016/j.scitotenv.2022.159874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
Recently, there is an upsurge in flood emergencies in Nigeria, in which their frequencies and impacts are expected to exacerbate in the future due to land-use/land cover (LULC) and climate change stressors. The separate and combined forces of these stressors on the Gongola river basin is feebly understood and the probable future impacts are not clear. Accordingly, this study uses a process-based watershed modelling approach - the Hydrological Simulation Program FORTRAN (HSPF) (i) to understand the basin's current and future hydrological fluxes and (ii) to quantify the effectiveness of five management options as adaptation measures for the impacts of the stressors. The ensemble means of the three models derived from the Coupled Model Intercomparison Project Phase 5 (CMIP5) are employed for generating future climate scenarios, considering three distinct radiative forcing peculiar to the study area. Also, the historical and future LULC (developed from the hybrid of Cellular Automata and Markov Chain model) are used to produce the LULC scenarios for the basin. The effective calibration, uncertainty and sensitivity analyses are used for optimising the parameters of the model and the validated result implies a plausible model with efficiency of up to 75 %. Consequently, the results of individual impacts of the stressors yield amplification of the peak flows, with more profound impacts from climate stressor than the LULC. Therefore, the climate impact may trigger a marked peak discharge that is 48 % higher as compared to the historical peak flows which are equivalent to 10,000-year flood event. Whilst the combine impacts may further amplify this value by 27 % depending on the scenario. The proposed management interventions such as planned reforestation and reservoir at Dindima should attenuate the disastrous peak discharges by almost 36 %. Furthermore, the land management option should promote the carbon-sequestering project of the Paris agreement ratified by Nigeria. While the reservoir would serve secondary functions of energy production; employment opportunities, aside other social aspects. These measures are therefore expected to mitigate feasibly the negative impacts anticipated from the stressors and the approach can be employed in other river basins in Africa confronted with similar challenges.
Collapse
Affiliation(s)
- AbdulRazaq Salaudeen
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia; Department of Water Resources and Environmental Engineering, Ahmadu Bello University Zaria, Nigeria; Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria.
| | - Shamsuddin Shahid
- School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Malaysia
| | - Abubakar Ismail
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University Zaria, Nigeria
| | - Babatunde K Adeogun
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University Zaria, Nigeria
| | - Morufu A Ajibike
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University Zaria, Nigeria
| | - Al-Amin Danladi Bello
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University Zaria, Nigeria
| | - Olugbenga B E Salau
- Department of Civil Engineering, Abubakar Tafawa Balewa University, Bauchi, Nigeria
| |
Collapse
|
4
|
Jia K, Zhang W, Xie B, Xue X, Zhang F, Han D. Does Climate Change Increase Crop Water Requirements of Winter Wheat and Summer Maize in the Lower Reaches of the Yellow River Basin? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16640. [PMID: 36554518 PMCID: PMC9779050 DOI: 10.3390/ijerph192416640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
With increasing water resources stress under climate change, it is of great importance to deeply understand the spatio-temporal variation of crop water requirements and their response to climate change for achieving better water resources management and grain production. However, the quantitative evaluation of climate change impacts on crop water requirements and the identification of determining factors should be further explored to reveal the influencing mechanism and actual effects thoroughly. In this study, the water requirements of winter wheat and summer maize from 1981 to 2019 in the lower reaches of the Yellow River Basin were estimated based on the Penman-Monteith model and crop coefficient method using daily meteorological data. Combined with trends test, sensitivity and contribution analysis, the impacts of different meteorological factors on crop water requirement variation were explored, and the dominant factors were then identified. The results indicated that the temperature increased significantly (a significance level of 0.05 was considered), whereas the sunshine duration, relative humidity and wind speed decreased significantly from 1981 to 2019 in the study area. The total water requirements of winter wheat and summer maize presented a significant decreasing trend (-1.36 mm/a) from 1981 to 2019 with a multi-year average value of 936.7 mm. The crop water requirements of winter wheat was higher than that of summer maize, with multi-year average values of 546.6 mm and 390.1 mm, respectively. In terms of spatial distribution patterns, the crop water requirement in the north was generally higher than that in the south. The water requirements of winter wheat and summer maize were most sensitive to wind speed, and were less sensitive to the minimum temperature and relative humidity. Wind speed was the leading factor of crop water requirement variation with the highest contribution rate of 116.26% among the considered meteorological factors. The results of this study will provide important support for strengthening the capacity to cope with climate change and realizing sustainable utilization of agricultural water resources in the lower reaches of the Yellow River Basin.
Collapse
Affiliation(s)
- Kun Jia
- School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Wei Zhang
- School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Bingyan Xie
- School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Xitong Xue
- School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Feng Zhang
- School of Management Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Dongrui Han
- Institute of Agricultural Information and Economics, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
5
|
Ma L, Mi C, Qu J, Ge D, Yang Q, Wilcove DS. Predicting range shifts of pikas (Mammalia, Ochotonidae) in China under scenarios incorporating land use change, climate change and dispersal limitations. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
- Liang Ma
- Princeton School of Public and International Affairs Princeton University Princeton NJ USA
| | - Chun‐rong Mi
- Key Laboratory of Animal Ecology and Conservation Biology Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Jia‐peng Qu
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology Chinese Academy of Sciences Xining China
| | - De‐yan Ge
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - Qi‐sen Yang
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology Chinese Academy of Sciences Beijing China
| | - David S. Wilcove
- Princeton School of Public and International Affairs Princeton University Princeton NJ USA
- Department of Ecology and Evolutionary Biology Princeton University Princeton NJ USA
| |
Collapse
|
6
|
Evaluating the Applicability of a Quantile–Quantile Adjustment Approach for Downscaling Monthly GCM Projections to Site Scale over the Qinghai-Tibet Plateau. ATMOSPHERE 2021. [DOI: 10.3390/atmos12091170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the context of global climate change, the Qinghai-Tibetan plateau (QTP) has experienced unprecedented changes in its local climate. While general circulation models (GCM) are able to forecast global-scale future climate change trends, further work needs to be done to develop techniques to apply GCM-predicted trends at site scale to facilitate local ecohydrological response studies. Given the QTP’s unique altitude-controlled climate pattern, the applicability of the quantile–quantile (Q-Q) adjustment approach for this purpose remains largely unknown and warrants investigation. In this study, this approach was evaluated at 36 sites to ensure the results are representative of different climatic and surface conditions on the QTP. Considering the practical needs of QTP studies, the study aims to assess its capability for downscaling monthly GCM simulations of major variables onto the site scale, including precipitation, air temperature, wind speed, relative humidity, and air pressure, based on two GCMs. The calibrated projections at the sites were verified against the observations and compared with those from two commonly used adjustment methods—the quantile-mapping method and the delta method. The results show that the general trends of most variables considered are well adjusted at all sites, with a quantile pair of 25–75% for all the variables except precipitation where 10–90% is used. The calibrated results are generally close to the observed values, with the best performance in air pressure, followed by air temperature and relative humidity. The performance is relatively limited in adjusting wind speed and precipitation. The accuracies decline as the adjustment extends into the future; a wider adjustment window may help increase the performance for the variables subject to climate changes. It is found that the performance of the adjustment is generally independent of the locations and seasons, but is strongly determined by the quality of GCM simulations. The Q-Q adjustment works better for the meteorological variables with fewer fluctuations and daily extremes. Variables with more similarities in probability density functions between the observations and GCM simulations tend to perform better in adjustment. Generally, this approach outperforms the two peer methods with broader applicability and higher accuracies for most major variables.
Collapse
|
7
|
Performance Evaluation and Comparison of Satellite-Derived Rainfall Datasets over the Ziway Lake Basin, Ethiopia. CLIMATE 2021. [DOI: 10.3390/cli9070113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Consistent time series rainfall datasets are important in performing climate trend analyses and agro-hydrological modeling. However, temporally consistent ground-based and long-term observed rainfall data are usually lacking for such analyses, especially in mountainous and developing countries. In the absence of such data, satellite-derived rainfall products, such as the Climate Hazard Infrared Precipitations with Stations (CHIRPS) and Global Precipitation Measurement Integrated Multi-SatellitE Retrieval (GPM-IMERG) can be used. However, as their performance varies from region to region, it is of interest to evaluate the accuracy of satellite-derived rainfall products at the basin scale using ground-based observations. In this study, we evaluated and demonstrated the performance of the three-run GPM-IMERG (early, late, and final) and CHIRPS rainfall datasets against the ground-based observations over the Ziway Lake Basin in Ethiopia. We performed the analysis at monthly and seasonal time scales from 2000 to 2014, using multiple statistical evaluation criteria and graphical methods. While both GPM-IMERG and CHIRPS showed good agreement with ground-observed rainfall data at monthly and seasonal time scales, the CHIRPS products slightly outperformed the GPM-IMERG products. The study thus concluded that CHIRPS or GPM-IMERG rainfall data can be used as a surrogate in the absence of ground-based observed rainfall data for monthly or seasonal agro-hydrological studies.
Collapse
|
8
|
Assessment of the Impacts of Land Use Change on Non-Point Source Loading under Future Climate Scenarios Using the SWAT Model. WATER 2021. [DOI: 10.3390/w13060874] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Miyun Reservoir is an important source of surface drinking water in Beijing. Due to climate change and human activities, the inflow of Miyun Reservoir watershed (MRW) has been continuously reduced in the past 30 years, which has seriously affected the safety of Beijing’s water supply. Therefore, this study aimed to assess the mitigation measures based on the quantification of the integrated impacts of climate and land use change in MRW. The non-point source (NPS) model (soil and water assessment tool, SWAT) was used for the development of future climate scenarios which were derived from two regional climate models (RCMs) under two representative concentration pathways (RCPs). Three land use scenarios were generated by the land use model (conversion of land-use and its effects (CLUE-S)): (1) historical trend scenario, (2) ecological protection without consideration of spatial configuration scenario and (3) ecological protection scenario. Moreover, the reduction of sediment and nutrients under three future land use patterns in future climate scenarios was evaluated. The results showed that an appropriate land use change project led to the desired reduction effect on sediment and nutrients output under future climate scenarios. The average reduction rates of sediment, total nitrogen and total phosphorus were 11.4%, 6.3% and 7.4%, respectively. The ecological protection scenario considering spatial configuration showed the best reduction effect on sediment, total nitrogen and total phosphorus. Therefore, the addition of region-specific preference variables as part of land use change provides better pollutant control effects. Overall, this research provides technical support to protect the safety of Beijing’s drinking water and future management of non-point source pollution in MRW.
Collapse
|